Basic Investigation on Melting Operations in the Die Casting Industry to Increase Manufacturing Efficiency and Process Reliability

Article Preview

Abstract:

The present study focuses on the inhouse melting process in front of a die casting process. The complexity and time-dependent dynamic of melting, distribution and casting process lead to the use of a dynamic process simulation approach. The goal of the simulation is to calculate the time-dependent discharge of the aluminum mass flux. Important parameters are identified and characterized by the use of a realistic process model. Thereby the influence on the analysis of parameters influence on storage, output and process stability is analyzed. It is shown that storage factor and melting capacity distribution have a significant impact. Moreover the control scheme for liquid aluminum distribution shows a strong influence. In preparation for future investigations on energy efficiency the load factor of the melting furnaces, its effects on process stability and potential for further process optimization is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http: /www. bdguss. de/branche/rolle-bedeutung/, 17. 07. (2014).

Google Scholar

[2] A. Ringleb, S. Hirschberg, W. Schlüter, D. Schneider, G. Pröbstle, A. Dentel, W. Stephan, Rationeller Energieeinsatz in der aluminiumverarbeitenden Industrie, GIESSEREI. 100 (06/2013) 74-77.

Google Scholar

[3] Information on http: /www. effguss. bdguss. de/, 17. 07. (2014).

Google Scholar

[4] P. Reichen, Zukunft der Leichtmetalldruckgießerei – Kosten- und ressourceneffizienter Druckguss aus Sicht eines Maschinenherstellers, GIESSEREI. 101 (01/2014) 76-81.

Google Scholar

[5] Information on http: /www. forenergy. de/, 17. 07. (2014).

Google Scholar

[6] Information on http: /www. greenfactorybavaria. net/, 17. 07. (2014).

Google Scholar

[7] A. Pithan, O. Lemański, S. Geisler, G. Röders, Handlungsfeld Ofenkonzepte – Technologien und Organisation, in: C. Herrmann, H. Pries, G. Hartmann (Eds. ), Energie- und ressourceneffiziente Produktion von Aluminiumdruckguss, Springer-Verlag, Berlin, 2013, pp.107-125.

DOI: 10.1007/978-3-642-39853-7_5

Google Scholar

[8] W. Stephan, K. Zitzmann, G. Pröbstle, J. Kapischke, Effiziente Energienutzung in Nicht-Eisen-Metall-Schmelzbetrieben, in: Bayerisches Landesamt für Umweltschutz (Eds. ), Effiziente Energieanwendung in der Industrie - Teilprojekt Metallschmelzbetriebe, Augsburg, (2005).

Google Scholar

[9] A. Dentel, W. Schlüter, A. Ringleb, D. Schneider, W. Stephan, G. Pröbstle, Rationeller Energieeinsatz in der aluminiumverarbeitenden Industrie. Abwärmenutzung und verbesserte Isolierung von Transportbehältern für flüssiges Aluminium, in: W.A. Mayer (Eds. ), FORETA – Ergebnisse des Forschungsverbundes Energieeffiziente Technologien und Anwendungen, Verlag Attenkofer, Straubing, 2013, pp. C1-C24.

Google Scholar

[10] M.G. Nicholls, Aluminum Production Modeling – A Nonlinear Bilevel Programming Approach, Operations Research (1994), Vol. 43, No. 2, 208-218.

DOI: 10.1287/opre.43.2.208

Google Scholar

[11] D. Friedrich, K. Bellmann (Eds. ), Simulation in der Fertigungssteuerung, first ed., Deutsche Universitäts-Verlag, Wiesbaden, (1998).

Google Scholar

[12] M. Saleem, S. Malik, J. Gottschling, D. Hartmann, H. Gemming, Intelligente Prozesssteuerung in Gießereien, GIESSEREI. 100 (11/2013) 28-43.

Google Scholar

[13] C. Zauner, Der Schlüssel für eine optimierte Produktion – Identifizieren, Automatisieren und Optimieren, GIESSEREI. 100 (12/2013) 76-79.

Google Scholar

[14] W. Dangelmaier, H. Wiedenmann, Modellbasiertes Planen und Steuern der Fertigung, first ed., Beuth Verlag, Berlin, (1997).

Google Scholar

[15] B.R. Sarker, J.A. Fitzsimmons, The Performance of push and pull systems: a simulation and comparative study, Int. Jour. of Production Research (1989), Vol. 27, Issue 10, 1715-1731.

DOI: 10.1080/00207548908942650

Google Scholar

[16] J.D. Hall, R.O. Bowden, J.M. Usher, Using evolution strategies and simulation to optimize a pull production system, Jour. of Materials Processing Technology (1996), Vol. 61, Issue 1-2, 47-52.

DOI: 10.1016/0924-0136(96)02464-8

Google Scholar

[17] Information on http: /www. mathworks. de/, 02. 08. (2014).

Google Scholar