[1]
T. G. Mathia, P. Pawlus, M. Wieczorowski, Recent trends in surface metrology, Wear. 271, 3–4 (2011) 494–508.
DOI: 10.1016/j.wear.2010.06.001
Google Scholar
[2]
S. Hloch, J. Valicek, D. Kozak, Preliminary results of experimental cutting of porcine bones by abrasive waterjet, Tehnicki Vjesnik - Technical Gazette. 18, 3 (2011) 467–470.
Google Scholar
[3]
J. B. Krolczyk, An attempt to predict quality changes in a ten-component granular system, Tehnicki Vjesnik - Technical Gazette. 21, 2 (2014) 255–261.
Google Scholar
[4]
S. Wojciechowski, P. Twardowski, M. Wieczorowski, Surface texture analysis after ball end milling with various surface inclination of hardened steel, Metrology and Measurement Systems. 21, 1 (2014) 145–156.
DOI: 10.2478/mms-2014-0014
Google Scholar
[5]
M. Wieczorowski, Spiral sampling as a fast way of data acquisition in surface topography, International Journal of Machine Tools and Manufacture. 41 (2001) 2017–(2022).
DOI: 10.1016/s0890-6955(01)00066-9
Google Scholar
[6]
G. Krolczyk, P. Raos, S. Legutko, Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts, Tehnicki Vjesnik - Technical Gazette. 21, 1 (2014), 217–221.
Google Scholar
[7]
P. Hreha, A. Radvanska, J. Carach, D. Lehocka, K. Monkova, G. Krolczyk, A. Ruggiero, I. Samardzic, D. Kozak, S. Hloch, Monitoring of focusing tube wear during Abrasive WaterJet (AWJ) cutting of AISI 309, Metalurgija. 53 4 (2014) 533-536.
Google Scholar
[8]
A. Pereira, P. Hernández, J. Martinez, J.A. Pérez, T.G. Mathia, Surface topographic characterization for polyamide composite injection molds made of aluminum and copper alloys, Scanning. 36 (2014) 39–52.
DOI: 10.1002/sca.21083
Google Scholar
[9]
R. Ourahmoune, M. Salvia, T.G. Mathia, N. Mesrati, Surface morphology and wettability of sandblasted PEEK and its composites, Scanning. 36 (2014) 64–75.
DOI: 10.1002/sca.21089
Google Scholar
[10]
A. Pereira, J. Martinez, M. T. Prado, J. A. Perez, T. Mathia, Topographic wear monitoring of the interface tool/workpiece in milling aisi h13 steel, Advanced Materials Research. 966-967 (2014) 152-167.
DOI: 10.4028/www.scientific.net/amr.966-967.152
Google Scholar
[11]
J.C. Outeiro, J.C. Pina, R. M'Saoubi, F. Pusavec, I.S. Jawahir, Analysis of Residual Stresses Induced by Dry Turning of Difficult-to-Machine Materials, CIRP Annals - Manufacturing Technology. 57 (2008) 77–80.
DOI: 10.1016/j.cirp.2008.03.076
Google Scholar
[12]
G. Krolczyk, P. Nieslony, S. Legutko, Microhardness and Surface Integrity in Turning Process of Duplex Stainless Steel (DSS) for Different Cutting Conditions, Journal of Materials Engineering and Performance. 23, 3 (2014) 859–866.
DOI: 10.1007/s11665-013-0832-4
Google Scholar
[13]
G. Krolczyk, P. Nieslony, S. Legutko, A. Stoic, Microhardness changes gradient of the duplex stainless steel (DSS) surface layer after dry turning, Metalurgija. 53, 4 (2014) 529-532.
DOI: 10.1007/s11665-013-0832-4
Google Scholar
[14]
A.I. Fernández-Abia, J. Barreiro, L.N. López de Lacalle, S. Martínez, Effect of very high cutting speeds on shearing, cutting forces and roughness in dry turning of austenitic stainless steels, International Journal of Advanced Manufacturing Technology. 57 (2011).
DOI: 10.1007/s00170-011-3267-9
Google Scholar
[15]
G.M. Krolczyk, P. Nieslony, S. Legutko, Determination of tool life and research wear during duplex stainless steel turning, Archives of Civil and Mechanical Engineering. (2014) http: /dx. doi. org/10. 1016/j. acme. 2014. 05. 001.
DOI: 10.1016/j.acme.2014.05.001
Google Scholar