[1]
Schneider, U. Concrete at high temperatures – a general review (1988) Fire Safety Journal, 13, pp.55-68.
Google Scholar
[2]
Terro, M.J. Numerical modeling of the behavior of concrete structures in fire (1998) ACI Structural Journal, 95 (2), pp.183-193.
Google Scholar
[3]
Khoury, G.A., Majorana, C.E., Pesavento, F., Schrefler, B.A. Modelling of heated concrete (2002) Magazine of Concrete Research 54(02), pp.77-101.
DOI: 10.1680/macr.54.2.77.40895
Google Scholar
[4]
Kodur, V. K. R., Wang, T. C., Cheng, F.P. Predicting the fire resistance behavior of high strength concrete columns (2004) Cement & Concrete Composites, 26, pp.141-153.
DOI: 10.1016/s0958-9465(03)00089-1
Google Scholar
[5]
Li, L., Purkiss, J.A. Stress-strain constitutive equations of concrete material at elevated temperatures (2005) Fire Safety Journal, 40, pp.669-686.
DOI: 10.1016/j.firesaf.2005.06.003
Google Scholar
[6]
Naus, D.J. A compilation of elevated temperature concrete material property data and information for use in assessments of nuclear power plant reinforced concrete structures (2010), Office of Nuclear Regulatory Research, 328 p.
Google Scholar
[7]
Aslani, F., Bastami, M. Constitutive relationships for normal- and high-strength concrete at elevated temperatures (2011) ACI Materials Journal, 4(108), pp.355-364.
DOI: 10.14359/51683106
Google Scholar
[8]
Fedorov, V.S., Levitskiy, V.E., Molchadskiy, I.S., Aleksandrov, A.V. Ognestojkost' i Pozharnaja Opasnost' Stroitel'nyh Konstrukcij [Fire Resistance and Fire Protection Structural Buildings] (2009).
Google Scholar