[1]
Luikov, A.V. Primenenie metodov termodinamiki neobratimykh protsessov k issledovaniyu teplo i massoobmena [Application of irreversible thermodynamics to the study of heat and mass transfer] (1965).
Google Scholar
[2]
Liykov, A.V. Teoriya sushki [Theory of Drying]: First Edition (1968) Theory of Drying: First Edition, 471 p.
Google Scholar
[3]
Kulchitsky, V.A., Ptchelkina, L.B. To the 100th anniversary of A.V. Luikov (2010) Academia. Architecture And Construction, 3, pp.20-26.
Google Scholar
[4]
Gagarin, V.G., Mogutov, V.A., Lukjanov, V.I. Manual of calculation of building envelope moisture regime NIISF Gosstroy: Third Edition (1984) Manual of calculation of building envelope moisture regime NIISF Gosstroy: Third Edition, 166 p.
Google Scholar
[5]
Gagarin, V.G. Byt' ili ne byt' [To be or not to be] (2008) Construction, 3, pp.181-185.
Google Scholar
[6]
Gagarin, V.G., Kozlov, V.V., Lukshin, K.I. Air velocity in the layer Suspended facade systems at natural ventilation (2013) The Journal Housing Construction, 10, pp.14-17.
Google Scholar
[7]
Gagarin, V.G., Kozlov, V.V., Lukshin, K.I., Pastushkov, P.P. About the use of a wind and hydroprotective membranes in hinged facade systems with a Hinged layer (2013) Scientific And Technical Vestnik Of Volga, 3, pp.120-122.
Google Scholar
[8]
Gagarin, V.G., Kozlov, V.V., Guvernjuk, S.V., Ledenev, P.V., Tsykanovsky, E.J. Results of researches of properties of hinged facade systems with the Hinged air layer in the frame of the grant of the russian fundamental researches fund Aerothermophysics of nontight bodies in low speed air streams, (2010).
Google Scholar
[9]
Sparrow, E.M., Gorman, J., Abraham, J. Quantitative assessment of the overall heat transfer coefficient (2013) Journal of Heat Transfer, 6, p.56.
DOI: 10.1115/1.4023566
Google Scholar
[10]
Rend, R.R., Sparrow, E.M., Bettenhausen, D.W., Abraham, J.P. Parasitic pressure losses in diffusers and in their downstream piping systems for fluid flow and heat transfer (2013) International Journal of Heat and Mass Transfer, 1, pp.56-61.
DOI: 10.1016/j.ijheatmasstransfer.2013.02.002
Google Scholar
[11]
Abraham, J.P., Sparrow, E.M., Tong, J.C.K., Minkowycz, W.J. Periodic flow modeling. Part 1: hydrodynamic and thermal simulation of steady, intermittent streams in the area of permanent channels (2010).
DOI: 10.1115/ihtc14-22858
Google Scholar
[12]
Minkowycz, W.J., Sparrow, E.M., Murthy, J.Y., Abraham, J.P. Handbook of Numerical Heat Transfer: Second Edition (2009) Handbook of Numerical Heat Transfer: Second Edition, 968 p.
DOI: 10.1002/9780470172599
Google Scholar
[13]
Abraham, J.P., Sparrow, E.M., Tong, J.C.K. Heat transfer in all pipe flow regimes: laminar, transitional/intermittent, and turbulent (2009) International Journal of Heat and Mass, 3, pp.557-563.
DOI: 10.1016/j.ijheatmasstransfer.2008.07.009
Google Scholar
[14]
Sparrow, E.M., Kratz, G.K., Schuerger, M.J. Evaporation of water from a horizontal surface by natural convection (1983) Journal of Heat Transfer, 105, pp.469-475.
DOI: 10.1115/1.3245609
Google Scholar
[15]
Sparrow, E.M., Littlejohn, N.T., Gorman, J.M., Abraham, J.P. Mass transfer and particle separation by swirl-chamber and swirl-tube devices (2013) Numerical Heat Transfer, 64, pp.611-620.
DOI: 10.1080/10407782.2013.790276
Google Scholar
[16]
Sparrow, E.M., Ruiz, R., Azevedo, L.F.A. Experimental and numerical investigation of natural convection in convergent vertical channels (1988) International Journal of Heat and Mass Transfer, 31, pp.907-915.
DOI: 10.1016/0017-9310(88)90079-8
Google Scholar
[17]
Rend, R.R., Sparrow, E.M., Bettenhausen, D.W., Abraham, J.P. Parasitic pressure losses in diffusers and in their downstream piping systems for fluid flow and heat transfer (2013) International Journal of Heat and Mass Transfer, 61, pp.56-61.
DOI: 10.1016/j.ijheatmasstransfer.2013.02.002
Google Scholar
[18]
Yakubov, S. Ventiliruemye fаsаdy dlya rossijskogo klimаtа [Hinged facades in the Russian climate] (2012) Plumbing. Heating. Conditioning, 9, pp.81-85.
Google Scholar
[19]
Panchuk, N.N., Different facades in the modern architecture (curtain walls, Hinged, translucent.. ) (2014) New Ideas New Century: Materials of international conference Publishers Pacific National University, 2, pp.213-217.
Google Scholar
[20]
Fast, A.A. Anаliz fаktorov, vliyayushhikh nа dolgovechnost' ventiliruemykh fаsаdnykh sistem [Analysis of factors affecting durability hinged facade system] (2014).
Google Scholar
[21]
Vorobyev, V.N. Nаvesnye fаsаdnye sistemy: problemy bezopаsnosti [Hinged facades: safety problems]: Third Edition (2011) Nаvesnye fаsаdnye sistemy: problemy bezopаsnosti [Hinged facades: safety problems]: Third Edition, 69 p.
Google Scholar
[22]
Vatin, N.I. Hinged facades: an overview of major issues (2007) Roofing and insulation materials, 6, pp.34-36.
Google Scholar
[23]
Lapin, V.G., Lapin, S.V. Air convective movement calculation in the channel of the Hinged facade with repeated horizontal holes in the lateral wall (2012) Privolzhsky Scientific Journal, 2, pp.85-92.
Google Scholar
[24]
Tusnina, O.E., Emelyanov, A.A., Tusnina, V.M. Thermal insulation properties of various Hinged facade systems (2013) Magazine of Civil Engineering, 8, pp.54-63.
DOI: 10.5862/mce.43.8
Google Scholar
[25]
Bessonov, I.V., Fomichev, A.I. Modeling of unsteady heat and moisture transfer in air Hinged layer of building (2011) Vestnik MGSU, 3, pp.228-234.
Google Scholar
[26]
Fokin, C.F. Stroitel'naya teplotekhnika ograzhdayushhikh chastej zdanij [Heat Engineering of Building Envelope Parts]: Fourth Edition (1973).
Google Scholar
[27]
Bogoslovskiy, V.N. Stroitel'naya teplofizika [Building Thermal Physics]: Second Edition (1982) Stroitel'naya teplofizika [Building Thermal Physics]: Second Edition, 415 p.
Google Scholar
[28]
Gutnikova Y.V., Sukhanov, P.S., Xherbak, N.N., Ob ustrojstve ehkranirovannykh sten v promyshlennykh zdaniyakh [About device shielded walls in industrial buildings] (1974) Industrial Construction, 12, pp.23-27.
Google Scholar
[29]
Homutov, A.F. Engineering method of calculation outside walls with periodic Hinged layer (1983) Transactions of NIISF Studies of Building Heat Protection, 3, pp.32-39.
Google Scholar
[30]
Lukjanov, V.I. Method of calculation of moisture state of building envelope with Hinged air layer for industrial building (1983) Transactions of NIISF Studies of Building Heat Protection, 5, pp.84-93.
Google Scholar
[31]
Fedosov, S.V. Application of the theory of heat and mass transfer in the solution of practical problems of construction. How to choose the right insulation, or PENOPLEX® 5 + (2010).
Google Scholar
[32]
Samar, A.P., Onokhov, E.Y., Holupova, O.V. Fire safety study of buildings shed-governmental facades (2013) FarEast: Problems Of Architectural Complex, 1, pp.357-362.
Google Scholar
[33]
Meshalkin, E.A. POZHАRNАYA BEZOPАSNOST' NАVESNYKH VENTILIRUEMYKH FАSАDOV [Fire safety of Hinged facades] (2011) Fire Safety In Construction, 3, pp.40-47.
Google Scholar
[34]
Khasanov, I.R., Molchadsky, I.S., Gol'tsov, K.N., Pestritsky, A.V. Fire Hazard of Suspended Face Systems (2006) Fire safety, 5, pp.36-47.
Google Scholar
[35]
Lazarevska, M., Cvetkovska, M., Knezevic, M., Milanovic, M., Murgul, V., Vatin, N. Neural Network Prognostic Model for Predicting the Fire Resistance of Eccentrically Loaded RC Columns (2014) Applied Mechanics and Material, 627, pp.276-282.
DOI: 10.4028/www.scientific.net/amm.627.276
Google Scholar
[36]
Nemova, D.V., Propusknaya sposobnost' vozdushnoj proslojki navesnykh ventiliruemykh fasadov [The capacity of the air layer ventilated facades] (2014).
Google Scholar
[37]
Miheev, M.A., Miheev, I.M. Osnovy teploperedachi [Basic Heat Transfer]: Second Edition (1977) Osnovy teploperedachi [Basic Heat Transfer]: Second Edition, 344 p.
Google Scholar
[38]
Mikheev, D.A. Improving the thermal efficiency of the outer wall protections based on thermal analysis studies (2010) Building construction, 15, pp.170-171.
Google Scholar
[39]
Vatin, N., Petrichenko, M., Nemova, D. Hydraulic methods for calculation of system of rear Hinged facades (2014) Applied Mechanics and Materials, 633-634, pp.1007-1012.
DOI: 10.4028/www.scientific.net/amm.633-634.1007
Google Scholar
[40]
Vatin, N., Petrichenko, M., Nemova, D., Kharkov, N., Korsun, A. Numerical modeling of thermogravitational convection in air gap of system of rear Hinged facades (2014) Applied Mechanics and Materials, 672-674, p.1903-(1908).
DOI: 10.4028/www.scientific.net/amm.672-674.1903
Google Scholar
[41]
Protasevich, A.M., Yakimovitch, D.D., Krutilin, A.B. Air filtration into the walls with Hinged façade (2006) Construction Materials, 11, pp.44-47.
Google Scholar