A New Approach for 3D Environment Measurement in Mobile Robot Applications

Article Preview

Abstract:

Here we propose a new approach for measuring the environment for the mobile robot. Without using any old framework of sensors; we utilized the latest vision system -- the spherical camera system - which consists of several cameras around a certain geometric surface. Equipped with a lift device, the spherical camera system can measure the environment around itself. We present some results of simulated and real experiments showing the validity of our method. Our approach is acceptable and exciting, and will be applied in the mobile robot’s application in the future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-190

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Giralt, R. Sobek, R. Chatila. A Multi-Level Planning and Navigation System for a Mobile Robot, A First Approach to Hilare. Proc. Int'l Conf. Artificial Intelligence (1979), pp.335-337.

Google Scholar

[2] H.P. Moravec. The Stanford Cart and the CMU Rover. Proc. IEEE Vol. 71-7(1983), pp.872-884.

DOI: 10.1109/proc.1983.12684

Google Scholar

[3] N.J. Nilsson. Shaky the Robot. Technical Report 323, SRI Int'l Apr. (1984).

Google Scholar

[4] T. Nakamura, M. Asada. Stereo Sketch: Stereo Vision-Based Target Reaching Behavior Acquisition with Occlusion Detection and Avoidance. Proc. Int'l Conf. Robotics and Automation (1996), pp.1314-1319.

DOI: 10.1109/robot.1996.506888

Google Scholar

[5] S. Atiya, G.D. Hager. IEEE Trans. Robotics and Automation Vol. 9-6(1993), pp.785-800.

Google Scholar

[6] H. Andreasson, A. Treptow, T. Duckett. Localization for Mobile Robots using Panoramic Vision, Local Features and Particle Filter. Proc. Int'l Conf. Robotics and Automation (2005), pp.3348-3353.

DOI: 10.1109/robot.2005.1570627

Google Scholar

[7] A. Briggs, Y. Li, D. Scharstein, M. Wilder. Robot Navigation Using 1D Panoramic Images. Proc. Int'l Conf. Robotics and Automation (2006), pp.2679-2685.

DOI: 10.1109/robot.2006.1642106

Google Scholar

[8] J. Roning, Z.L. Cao, and E.L. Hall. Color Target Recognition Using Omnidirectional Vision. Proc. SPIE Optics, Illumination and Image Sensing for Machine Vision Vol. 728(1987), pp.57-63.

DOI: 10.1117/12.937824

Google Scholar

[9] Y. Yagi, S. Kawato, and S. Tsuji. IEEE Trans. Robotics and Automation Vol. 10-1(1994), pp.11-22.

Google Scholar

[10] Y. Yagi, M. Yachida. Int'l Journal of Computer Vision Vol. 58-3(2004), pp.173-270.

Google Scholar

[11] A, Ramisa, A, Tapus, R.L. Mantaras, R. Toledo. Mobile Robot Localization using Panoramic Vision and Combinations of Features Region Detectors. Proc. Int'l Conf. Robotics and Automation (2008), pp.538-543.

DOI: 10.1109/robot.2008.4543262

Google Scholar

[12] A. Kropp, N. Master, S. Teller. Acquiring and Rendering High-Resolution Spherical Mosaics. Proc. IEEE Workshop on OmniDirectional Vision (2000), pp.47-53.

DOI: 10.1109/omnvis.2000.853803

Google Scholar

[13] P. Peer, F. Solina. Int'l Journal of Computer Vision Vol. 47(2002), pp.149-160.

Google Scholar

[14] H. Shum, A. Kalai, S. Seitz. Omnivergent Stereo. Proc. Int'l Conf. Computer Vision (1999), pp.22-29.

DOI: 10.1109/iccv.1999.791193

Google Scholar

[15] H. Morita, M. Hild, J. Miura, Y. Shirai. Panoramic View-Based Navigation in Outdoor Environments Based on Support Vector Learning. Proc. Int'l Conf. Intelligent Robots and Systems (2006), pp.2303-2307.

DOI: 10.1109/iros.2006.282636

Google Scholar

[16] Stan Birchfield and Carlo Tomasi. Int'l Journal of Computer Vision Vol. 35-3(1999), pp.269-293.

Google Scholar

[17] A. Fusiello and L. Irsara. Quasi-Euclidean Uncalibrated Epipolar Rectification. Proc. International Conference on Pattern Recognition (2008), pp.1-4.

DOI: 10.1109/icpr.2008.4761561

Google Scholar

[18] A. Fusiello, E. Trucco, and A. Verri. Machine Vision and Applications Vol 12-1(2000), pp.16-22.

Google Scholar