Dip-Coating of Patterned Organic Semiconductor Films

Article Preview

Abstract:

Dip-coating is a conventional solution processing technology to prepare large-area films at a low cost and with cheap facilities. For semiconductor film processing, crystal orientation and thickness uniformity are the primary factors that determine the film quality and its electrical performance. These requirements are readily satisfied with the dip-coating method because the film morphology can be effectively optimized by tuning the withdrawal speed. This work optimizes the withdrawal speed for the dip-coating of patterned semiconductor films of 400×500 mm2 as well as that for film dip-coating on the whole surfaces of the substrate. For both experiment, optimized electrical mobility is achieved at the same withdrawal speed, however, the random crystal orientation of the patterned films causes a remarkable decrease in device performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-37

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. C. Gather, A. Kohnen and K. Meerholz. White organic light-emitting diodes. Adv Mater. 2011, 23(2): 233-248.

DOI: 10.1002/adma.201002636

Google Scholar

[2] C. Zysset, K. Cherenack, T. Kinkeldei and G. Troster. Weaving Integrated Circuits into Textiles. Nat. Mater. 2007, 6(5): 357-362.

DOI: 10.1109/iswc.2010.5665874

Google Scholar

[3] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler and A. Facchetti. A high-mobility electron-transporting polymer for printed transistors. Nature. 2009, 457(7230): 679-686.

DOI: 10.1038/nature07727

Google Scholar

[4] S. H. Lee, M. H. Choi, S. H. Han, D. J. Choo, J. Jang and S. K. Kwon. High-performance thin-film transistor with 6, 13-bis(triisopropylsilylethynyl) pentacene by inkjet printing. Organic Electronics. 2008, 9(5): 721-726.

DOI: 10.1016/j.orgel.2008.05.002

Google Scholar

[5] Y. -L. Loo. Solution-processable organic semiconductors for thin-film transistors: Opportunities for chemical engineers. AIChE Journal. 2007, 53(5): 1066-1074.

DOI: 10.1002/aic.11151

Google Scholar

[6] B. -J. d. Gans, P. C. Duineveld and U. S. Schubert. Inkjet Printing of Polymers State of the Art and Future Developments. Advanced Materials. 2004, 16(3): 203-213.

DOI: 10.1002/adma.200300385

Google Scholar

[7] F. C. Krebs. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells. 2009, 93(4): 394-412.

DOI: 10.1016/j.solmat.2008.10.004

Google Scholar

[8] M. Helgesen, R. Søndergaard and F. C. Krebs. Advanced materials and processes for polymer solar cell devices. Journal of Materials Chemistry. 2010, 20(1): 36.

DOI: 10.1039/b913168j

Google Scholar

[9] M. Li, C. An, W. Pisula and K. Mullen. Alignment of organic semiconductor microstripes by two-phase dip-coating. Small. 2014, 10(10): 1926-(1931).

DOI: 10.1002/smll.201303182

Google Scholar

[10] P. H. Kasai and C. Spiese. Interaction between disk lubricants and solvents in the dip-coating process. Tribology Letters. 2004, 17(4): 823-833.

DOI: 10.1007/s11249-004-8090-0

Google Scholar

[11] S. -h. Lee, W. So, J. H. Jung, G. Nam, H. Park, H. Yoon, B. G. Kim, S. H. Park, S. Kim, M. S. Kim, J. Lee and J. -Y. Leem. Effects of precursor concentrations on ZnO nano-fibrous thin films grown by using the sol-gel dip-coating method. Journal of the Korean Physical Society. 2013, 61(12): 1925-(1931).

DOI: 10.3938/jkps.61.1925

Google Scholar

[12] H. Uchiyama, D. Shimaoka and H. Kozuka. Spontaneous pattern formation based on the coffee-ring effect for organic–inorganic hybrid films prepared by dip-coating: effects of temperature during deposition. Soft Matter. 2012, 8(44): 11318.

DOI: 10.1039/c2sm26328a

Google Scholar

[13] N. Tiwari and J. M. Davis. Theoretical analysis of the effect of insoluble surfactant on the dip coating of chemically micropatterned surfaces. Physics of Fluids. 2006, 18(2): 022102.

DOI: 10.1063/1.2171715

Google Scholar

[14] M. Shao, S. Das, K. Xiao, J. Chen, J. K. Keum, I. N. Ivanov, G. Gu, W. Durant, D. Li and D. B. Geohegan. High-performance organic field-effect transistors with dielectric and active layers printed sequentially by ultrasonic spraying. Journal of Materials Chemistry C. 2013, 1(28): 4384.

DOI: 10.1039/c3tc30535j

Google Scholar

[15] H. S. Byun, Y. -X. Xu and C. K. Song. Fabrication of high performance pentacene thin film transistors using poly(4-vinylphenol) as the gate insulator on polyethyleneterephthalate substrates. Thin Solid Films. 2005, 493(1-2): 278-281.

DOI: 10.1016/j.tsf.2005.07.200

Google Scholar

[16] C. Zhang, X. Zhang, X. Zhang, X. Fan, J. Jie, J. C. Chang, C. -S. Lee, W. Zhang and S. -T. Lee. Facile One-Step Growth and Patterning of Aligned Squaraine Nanowires via Evaporation-Induced Self-Assembly. Advanced Materials. 2008, 20(9): 1716-1720.

DOI: 10.1002/adma.200703142

Google Scholar

[17] J. Huang, R. Fan, S. Connor and P. Yang. One-step patterning of aligned nanowire arrays by programmed dip coating. Angew Chem Int Ed Engl. 2007, 46(14): 2414-2417.

DOI: 10.1002/anie.200604789

Google Scholar

[18] C. W. Sele, B. K. C. Kjellander, B. Niesen, M. J. Thornton, J. B. P. H. van der Putten, K. Myny, H. J. Wondergem, A. Moser, R. Resel, A. J. J. M. van Breemen, N. van Aerle, P. Heremans, J. E. Anthony and G. H. Gelinck. Controlled Deposition of Highly Ordered Soluble Acene Thin Films: Effect of Morphology and Crystal Orientation on Transistor Performance. Advanced Materials. 2009, 21(48): 4926-4931.

DOI: 10.1002/adma.200901548

Google Scholar

[19] Y. Su, X. Gao, J. Liu, R. Xing and Y. Han. Uniaxial alignment of triisopropylsilylethynyl pentacene via zone-casting technique. Phys Chem Chem Phys. 2013, 15(34): 14396-14404.

DOI: 10.1039/c3cp51264a

Google Scholar