[1]
R.A. Wood, Uncooled thermal imaging with monolithic silicon focal plans, Poc. SPIE, vol. 2020, (1993) 322-329.
Google Scholar
[2]
A. C. Jones, S. Berweger, Jiang Wei, D. Cobden, and M. B. Raschke, Nano-optical investigations of the metal-insulator phase behavior of individual V02 microcrystals, Nano Letters 10, (2010) 1574-1581.
DOI: 10.1021/nl903765h
Google Scholar
[3]
J. Wei, Z. Wang, W, Chen, and D.H. Cobden, New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams, Nature Nanotechnology 4, (2009) 420-424.
DOI: 10.1038/nnano.2009.141
Google Scholar
[4]
V. N. Ovsuk, et al., Uncooled matrix micro-bolometric IR detectors based on sol-gel VOx, Journal of Applied Physics (Russian), no. 6, 2005, pp.114-117.
Google Scholar
[5]
J.J. Yang, et al., Memristive switching mechanism for metal/oxide/metal nanodevices, Nat Nano, 3 (2008) 429.
Google Scholar
[6]
Y.V. Pershin and M. Di Ventra, Spin memristive systems: Spin memory effects in semiconductor spintronics. Physical Review B (Condensed Matter and Materials Physics), 78(11), (2008) 113309-4.
DOI: 10.1103/physrevb.78.159905
Google Scholar
[7]
H.W. Verleur, A.S. Barker, C.N. Berglund, Optical Properties of VO2 between 0. 25 and 5 eV, Phys. Rev. 172, (1968) 788-798.
Google Scholar
[8]
F.J. Morin, Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 3, (1959) 34-36.
DOI: 10.1103/physrevlett.3.34
Google Scholar
[9]
F. Chudnovskiy, S. Luryi, & B. Spivak, in Future Trends in Microelectronics: The Nano Millennium (Wiley-IEEE Press), (2002).
Google Scholar
[10]
H. Jerominek, F. Picard, D. Vincent, Vanadium-Oxide Films for Optical Switching and Detection. Optical Engineering 32, (1993) 2092-(2099).
DOI: 10.1117/12.143951
Google Scholar
[11]
S.N. Svitasheva, Optimization of maximum VO2 content in polymorphous oxides of vanadium. -/ Key Engineering Materials, Vol. 538, pp.113-116, (2013).
DOI: 10.4028/www.scientific.net/kem.538.113
Google Scholar
[12]
T.G. Lanskaya, R.I. Lubinskaya, S.N. Svitasheva, Ellipsometric study of thermal oxidation of Vanadium, Jouran of Technical Physics, 51, (1981) 1920-(1927).
Google Scholar
[13]
S. N. Svitasheva, V. N. Kruchinin, Spectral dependence of the complex refractive index shift across the semiconductor-metal transition in thermally- oxidized Vanadium, Thin Solid Films, 313-314, 319-322 (1998).
DOI: 10.1016/s0040-6090(97)00840-7
Google Scholar
[14]
S. N. Svitasheva, Modeling Methods of Optical Inhomogeneous Structures. Application of Ellipsometry. Lambert Academic Publishing, (2013).
Google Scholar
[15]
B.S. Borisov, S.T. Koretskaya, V.G. Mokerov, A.V. Rakov, S.G. Solovjev, Electrical and Optical Properties of VO2 in semi-metal semiconductor transition, Solid State Physics, 12 (1970) 2209-2216.
Google Scholar
[16]
J.D. DeLoach, G. Scarel, C. R. Aita, Correlation between titania film structure and near ultraviolet optical absorption, J. Appl. Phys. 85, 2377 (1999).
DOI: 10.1063/1.369553
Google Scholar
[17]
H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F, Lèvy, Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042 (1994).
DOI: 10.1063/1.356306
Google Scholar
[18]
H. Selhofer, E. Ritter, and R. Linsbod, Properties of Titanium dioxide films prepared by reactive electron beam evaporation from various starting materials. Appl. Opt. 41, 756-762 (2002).
DOI: 10.1364/ao.41.000756
Google Scholar
[19]
S.N. Svitasheva, V.A. Gritsenko, B.A. Kolesov, Optical properties of TiO2 films made by air oxidation of Ti. Phys. stat. sol. (c), 5, (2008) pp.1101-1104.
DOI: 10.1002/pssc.200777731
Google Scholar
[20]
Rodney Loudon, The quantum Theory of Light (Clarendon Press, Oxford), (1973).
Google Scholar
[21]
G. E. Jellison, L. A. Boatner, J. D. Budai, B. S. Jeong,. D. P. Norton. Spectral ellipsometry of thin film and bulk anatase (TiO2)-/ J. Appl. Phys. 93, No. 12, p.9537, (2003).
DOI: 10.1063/1.1573737
Google Scholar