Ellipsometry as Testing Method of Properties of Nano-Scale Films

Article Preview

Abstract:

Ellipsometry is power instrument for testing several properties of thin films. Advantage and attractiveness of these optical studies consist in that they are non-destructive and non-disturbing. High sensitivity to surface state allows us to monitoring properties of films beginning from atomic scale as in-situ and as ex situ. Ellipsometry give us information about film thickness, and film composition, and its surface morphology. From analysis of ellipsometric spectra it is possible get data about zone structure of semiconductor materials, such as energy of critical points, absorption edge location, and crystallinity. Speed of data acquisition is sufficient high to test dynamic of film growth. Ellipsometric measurements are quite simple but its interpretation requires special software. In this paper some possibilities of ellipsometric method are demonstrated in examples film polymorphism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-154

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. Wood, Uncooled thermal imaging with monolithic silicon focal plans, Poc. SPIE, vol. 2020, (1993) 322-329.

Google Scholar

[2] A. C. Jones, S. Berweger, Jiang Wei, D. Cobden, and M. B. Raschke, Nano-optical investigations of the metal-insulator phase behavior of individual V02 microcrystals, Nano Letters 10, (2010) 1574-1581.

DOI: 10.1021/nl903765h

Google Scholar

[3] J. Wei, Z. Wang, W, Chen, and D.H. Cobden, New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams, Nature Nanotechnology 4, (2009) 420-424.

DOI: 10.1038/nnano.2009.141

Google Scholar

[4] V. N. Ovsuk, et al., Uncooled matrix micro-bolometric IR detectors based on sol-gel VOx, Journal of Applied Physics (Russian), no. 6, 2005, pp.114-117.

Google Scholar

[5] J.J. Yang, et al., Memristive switching mechanism for metal/oxide/metal nanodevices, Nat Nano, 3 (2008) 429.

Google Scholar

[6] Y.V. Pershin and M. Di Ventra, Spin memristive systems: Spin memory effects in semiconductor spintronics. Physical Review B (Condensed Matter and Materials Physics), 78(11), (2008) 113309-4.

DOI: 10.1103/physrevb.78.159905

Google Scholar

[7] H.W. Verleur, A.S. Barker, C.N. Berglund, Optical Properties of VO2 between 0. 25 and 5 eV, Phys. Rev. 172, (1968) 788-798.

Google Scholar

[8] F.J. Morin, Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 3, (1959) 34-36.

DOI: 10.1103/physrevlett.3.34

Google Scholar

[9] F. Chudnovskiy, S. Luryi, & B. Spivak, in Future Trends in Microelectronics: The Nano Millennium (Wiley-IEEE Press), (2002).

Google Scholar

[10] H. Jerominek, F. Picard, D. Vincent, Vanadium-Oxide Films for Optical Switching and Detection. Optical Engineering 32, (1993) 2092-(2099).

DOI: 10.1117/12.143951

Google Scholar

[11] S.N. Svitasheva, Optimization of maximum VO2 content in polymorphous oxides of vanadium. -/ Key Engineering Materials, Vol. 538, pp.113-116, (2013).

DOI: 10.4028/www.scientific.net/kem.538.113

Google Scholar

[12] T.G. Lanskaya, R.I. Lubinskaya, S.N. Svitasheva, Ellipsometric study of thermal oxidation of Vanadium, Jouran of Technical Physics, 51, (1981) 1920-(1927).

Google Scholar

[13] S. N. Svitasheva, V. N. Kruchinin, Spectral dependence of the complex refractive index shift across the semiconductor-metal transition in thermally- oxidized Vanadium, Thin Solid Films, 313-314, 319-322 (1998).

DOI: 10.1016/s0040-6090(97)00840-7

Google Scholar

[14] S. N. Svitasheva, Modeling Methods of Optical Inhomogeneous Structures. Application of Ellipsometry. Lambert Academic Publishing, (2013).

Google Scholar

[15] B.S. Borisov, S.T. Koretskaya, V.G. Mokerov, A.V. Rakov, S.G. Solovjev, Electrical and Optical Properties of VO2 in semi-metal semiconductor transition, Solid State Physics, 12 (1970) 2209-2216.

Google Scholar

[16] J.D. DeLoach, G. Scarel, C. R. Aita, Correlation between titania film structure and near ultraviolet optical absorption, J. Appl. Phys. 85, 2377 (1999).

DOI: 10.1063/1.369553

Google Scholar

[17] H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F, Lèvy, Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042 (1994).

DOI: 10.1063/1.356306

Google Scholar

[18] H. Selhofer, E. Ritter, and R. Linsbod, Properties of Titanium dioxide films prepared by reactive electron beam evaporation from various starting materials. Appl. Opt. 41, 756-762 (2002).

DOI: 10.1364/ao.41.000756

Google Scholar

[19] S.N. Svitasheva, V.A. Gritsenko, B.A. Kolesov, Optical properties of TiO2 films made by air oxidation of Ti. Phys. stat. sol. (c), 5, (2008) pp.1101-1104.

DOI: 10.1002/pssc.200777731

Google Scholar

[20] Rodney Loudon, The quantum Theory of Light (Clarendon Press, Oxford), (1973).

Google Scholar

[21] G. E. Jellison, L. A. Boatner, J. D. Budai, B. S. Jeong,. D. P. Norton. Spectral ellipsometry of thin film and bulk anatase (TiO2)-/ J. Appl. Phys. 93, No. 12, p.9537, (2003).

DOI: 10.1063/1.1573737

Google Scholar