[1]
V.L. Niranjani, B.S.S.C.R., Vajinder Singh, S.V. Kamat, Influence of temperature and strain rate on tensile properties of single walled carbon nanotubes reinforced Sn–Ag–Cu lead free solder alloy composites, Materials Science and Engineering A, 529(2011).
DOI: 10.1016/j.msea.2011.09.026
Google Scholar
[2]
Xiaowu Hu, K.L., Zhixian Min Microstructure evolution and mechanical properties of Sn0. 7Cu0. 7Bi lead-free solders produced by directional solidification, Journal of Alloys and Compounds, 566(2013). 239–245.
DOI: 10.1016/j.jallcom.2013.03.034
Google Scholar
[3]
Gupta, X.L.Z. a.M., Development of lead-free Sn–0. 7Cu/Al2O3 nanocomposite solders with superior strength, J. Phys. D: Appl. Phys., 41(2008).
Google Scholar
[4]
Y. Tang , G.Y.L., Y.C. Pan Influence of TiO2 nanoparticles on IMC growth in Sn–3. 0Ag–0. 5Cu–xTiO2 solder joints in reflow process, Journal of Alloys and Compounds, 554(2013). 195-203.
DOI: 10.1016/j.jallcom.2012.12.019
Google Scholar
[5]
Y. Tang, G.Y.L., Y.C. Pan Effects of TiO2 nanoparticles addition on microstructure, microhardness and tensile properties of Sn–3. 0Ag–0. 5Cu–xTiO2 composite solder, Materials and Design, 55(2014). 574–582.
DOI: 10.1016/j.matdes.2013.10.033
Google Scholar
[6]
S.M.L. Nai, J.W., M. Gupta Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes, Materials Science and Engineering, A 423(2006). 166–169.
DOI: 10.1016/j.msea.2005.10.072
Google Scholar
[7]
Y. Tanga, G.Y.L., Y.C. Pan, Effects of TiO2 nanoparticles addition on microstructure, microhardness and tensile properties of Sn–3. 0Ag–0. 5Cu–xTiO2 composite solder, Materials and Design, 55(2014). 574–582.
DOI: 10.1016/j.matdes.2013.10.033
Google Scholar
[8]
Tsao, L.C., An investigation of microstructure and mechanical properties of novel Sn3. 5Ag0. 5Cu–XTiO2 composite solders as functions of alloy composition and cooling rate, Materials Science and Engineering A, (529)(2011). 41-48.
DOI: 10.1016/j.msea.2011.08.053
Google Scholar
[9]
K. Mohan Kumar, V.K., Andrew A.O. Tay Single-wall carbon nanotube (SWCNT) functionalized Sn–Ag–Cu lead-free composite solders, Journal of Alloys and Compounds, 450(2008). 229–237.
DOI: 10.1016/j.jallcom.2006.10.123
Google Scholar
[10]
J. C. Leong , L.C.T., C. J. Fang and C. P. Chu, Effect of nano-TiO2 addition on the microstructure and bonding strengths of Sn3. 5Ag0. 5Cu composite solder BGA packages with immersion Sn surface finish, J Mater Sci: Mater Electron, 22(2011).
DOI: 10.1007/s10854-011-0327-8
Google Scholar
[11]
A.A. El-Daly, A.F., S.F. Mansour , M.J. Younis Novel SiC nanoparticles-containing Sn–1. 0Ag–0. 5Cu solder with good drop impact performance, Materials Science&Engineering A, (2013). 62–71.
DOI: 10.1016/j.msea.2013.04.022
Google Scholar
[12]
S.M.L. Nai, J.W., And M. Gupta, Lead-Free Solder Reinforced with Multiwalled Carbon Nanotubes, Journal of Electronic Materials, 37(7)(2006). 1518-1522.
DOI: 10.1007/s11664-006-0142-9
Google Scholar
[13]
M.A.A. Mohd Salleh, A.M.M.A., M.H. Zan@Hazizi , Flora Somidin , Noor Farhani Mohd Alui , Zainal Arifin Ahmad Mechanical properties of Sn–0. 7Cu/Si3N4 lead-free composite solder, Materials Science&Engineering A, (2012). 633–637.
DOI: 10.1016/j.msea.2012.07.039
Google Scholar