[1]
E. Benes, M. Gröschl, W. Burger, and M. Schmid, Sensors based on piezoelectricresonators, Sens. Actuators Phys. 48 (1995) 1-21.
Google Scholar
[2]
L. Huang, H. Yang, Y. Gao, L. Zhao, and J. Liang, Design and Implementation of a Micromechanical Silicon Resonant Accelerometer. Sensors 13 (2013) 15785-15804.
DOI: 10.3390/s131115785
Google Scholar
[3]
H.M. Saraoğlu and B. Kırankabeş, QCM Sensor Frequency Responses and MAC Values Comparison of Different Anesthetics used in Inhalation Anesthesia. 4th European Conference of the International Federation for Medical and Biological Engineering, (2009).
DOI: 10.1007/978-3-540-89208-3_261
Google Scholar
[4]
H.M. Saraoğlu and M. Koçan, Determination of Blood Glucose Level-Based Breath Analysis by a Quartz Crystal Microbalance Sensor Array. IEEE Sens. J. 10 (2010). 104-109.
DOI: 10.1109/jsen.2009.2035769
Google Scholar
[5]
B. Du, S. Dong, Y. Wang, S. Guo, L. Cao, W. Zhou, Y. Zuo, and D. Liu, High-resolution frequency measurement method with a wide-frequency range based on a quantized phase step law, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 (2013).
DOI: 10.1109/tuffc.2013.6644729
Google Scholar
[6]
O.M. Uy, R.P. Cain, B.G. Carkhuff, R. T. Cusick, and B.E. Wood, Miniature Quartz Crystal Microbalance for Spacecraft and Missile Applications, 20 (1999) 199-211.
Google Scholar
[7]
Standard Practice for QCM Measurement of Spacecraft Molecular Contamination in Space. CERN Document Server, (2004).
Google Scholar
[8]
Y. Wang, P. Ding, R. Hu, J. Zhang, X. Ma, Z. Luo, and G. Li, A Dibutyl Phthalate Sensor Based on a Nanofiber Polyaniline Coated Quartz Crystal Monitor. Sensors 13 (2013) 3765-3775.
DOI: 10.3390/s130303765
Google Scholar
[9]
I. Sasaki, H. Tsuchiya, M. Nishioka, M. Sadakata, and T. Okubo, Gas sensing with zeolite-coated quartz crystal microbalances-principal component analysis approach. Sens. Actuators B Chem. 86 (2002) 26-33.
DOI: 10.1016/s0925-4005(02)00132-6
Google Scholar
[10]
H. Xie, X. X. Sun, Q. Yang, J. Wang, and Y. Huang, Novel gas sensor based on nano-zeolite films for the nerve agent simulant dimethylmethylphosphonate detection, 7th International Conference on Solid-State and Integrated Circuits Technology, 4 (2004).
DOI: 10.1109/icsict.2004.1435164
Google Scholar
[11]
H. Xie, Q. Yang, X. Sun, T. Yu, J. Zhou, and Y. Huang, Gas sensors based on nanosized-zeolite films to identify dimethylmethylphosphonate. Sens Mater. 17 (2005) 21-28.
Google Scholar
[12]
W. Yao, Y. Hu, X. Ji, N. Ren, J. Zhou, Y. Huang, and Y. Tang, Absorption and desorption characteristic of zeolites in gas sensor system, 9th International Conference on Solid-State and Integrated-Circuit Technology, (2008) 2589–2592.
DOI: 10.1109/icsict.2008.4735102
Google Scholar
[13]
X. Ji, W. Yao, J. Peng, N. Ren, J. Zhou, and Y. Huang, Evaluation of Cu-ZSM-5 zeolites as QCM sensor coatings for DMMP detection. Sens. Actuators B Chem. 166 (2013) 50-55.
DOI: 10.1016/j.snb.2011.12.014
Google Scholar
[14]
M. Molina, F. Murrieta, O. Yu Sergiyenko, V. Petranovskii, and D. Hernandez-Balbuena, Frequency Measurement by Principle of Rational Approximation for Aerospace Frequency Domain Mechanical Parameter Sensors. J. Aeronaut. Aerosp. Eng. 2 (2013).
DOI: 10.4172/2168-9792.1000111
Google Scholar
[15]
A. Afzal, N. Iqbal, A. Mujahid, and R. Schirhagl, Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: A review. Anal. Chim. Acta 787 (2013) 36-49.
DOI: 10.1016/j.aca.2013.05.005
Google Scholar
[16]
O.Y. Sergiyenko, D. Hernandez Balbuena, V.V. Tyrsa, P.L.A. Rosas Mendez, W. Hernandez, J.I. Nieto Hipolito, O. Starostenko, and M. Rivas Lopez, Automotive FDS Resolution Improvement by Using the Principle of Rational Approximation. IEEE Sens. J. 12 (2012).
DOI: 10.1109/jsen.2011.2166114
Google Scholar
[17]
F.N. Murrieta R, O.Y. Sergiyenko, V.V. Tyrsa, D. Hernández B, and W. Hernandez, Frequency domain automotive sensors: Resolution improvement by novel principle of rational approximation. IEEE International Conference on Industrial Technology, (2010).
DOI: 10.1109/icit.2010.5472528
Google Scholar
[18]
N. Barié, M. Bücking, and M. Rapp, A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring. Sens. Actuators B Chem. 114 (2006).
DOI: 10.1016/j.snb.2005.06.051
Google Scholar
[19]
G.K. Kannan, A.T. Nimal, U. Mittal, R.D.S. Yadava, and J.C. Kapoor, Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2, 4-dinitro toluene (DNT) vapour detection. Sens. Actuators B Chem. 101 (2004) 328–334.
DOI: 10.1016/j.snb.2004.04.003
Google Scholar
[20]
J. Zhou, P. Li, S. Zhang, Y. Long, F. Zhou, Y. Huang, P. Yang, and M. Bao, Zeolite-modified microcantilever gas sensor for indoor air quality control. Sens. Actuators B Chem. 94 (2003) 337–342.
DOI: 10.1016/s0925-4005(03)00369-1
Google Scholar
[21]
C. Ziegler, Cantilever-based biosensors. Anal. Bioanal. Chem. 379 (2004) 946–959.
Google Scholar
[22]
H. Lang, M. Hegner, and C. Gerber, Nanomechanical Cantilever Array Sensors, Springer Handbook of Nanotechnology (2007) 443–460.
DOI: 10.1007/978-3-540-29857-1_16
Google Scholar
[23]
K. Jensen, K. Kim, and A. Zettl, An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3 (2008) 533–537.
DOI: 10.1038/nnano.2008.200
Google Scholar
[24]
J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7 (2012) 301–304.
DOI: 10.1038/nnano.2012.42
Google Scholar
[25]
S. Johansson, New frequency counting principle improves resolution. IEEE International Frequency Control Symposium and Exposition, (2005) 628-635.
DOI: 10.1109/freq.2005.1574007
Google Scholar
[26]
N.V. Kirianaki, S.Y. Yurish, and N.O. Shpak, Methods of dependent count for frequency measurements. Measurement 29 (2001) 31-50.
DOI: 10.1016/s0263-2241(00)00026-9
Google Scholar
[27]
K.D. Hurst and T.G. Habetler, A comparison of spectrum estimation techniques for sensorless speed detection in induction machines. IEEE Trans. Ind. Appl. 33 (1997) 898-905.
DOI: 10.1109/28.605730
Google Scholar
[28]
C. Wang, W. Zhou, Z. Li, S. Qian, W. Jiang, and C. Wang, A time and frequency measurement method based on delay-chain technique. IEEE International Frequency Control Symposium, (2008) 484-486.
DOI: 10.1109/freq.2008.4623046
Google Scholar
[29]
S. H. Kia, H. Henao, and G. -A. Capolino, A High-Resolution Frequency Estimation Method for Three-Phase Induction Machine Fault Detection. IEEE Trans. Ind. Electron. 54 (2007) 2305–2314.
DOI: 10.1109/tie.2007.899826
Google Scholar
[30]
D. Hernández Balbuena, O. Sergiyenko, V. Tyrsa, L. Burtseva, and M. R. López, Signal frequency measurement by rational approximations. Measurement 42 (2009) 136-144.
DOI: 10.1016/j.measurement.2008.04.009
Google Scholar
[31]
O. Sergiyenko, D. Hernández Balbuena, V. Tyrsa, P.L.A. Rosas Méndez, M.R. Lopez, W. Hernandez, M. Podrygalo, and A. Gurko, Analysis of jitter influence in fast frequency measurements. Measurement 44 (2011) 1229-1242.
DOI: 10.1016/j.measurement.2011.04.001
Google Scholar