[1]
F. Parrino, G. Camera-Roda, V. Loddo, G. Palmisano, V. Augugliaro, Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion, Water Research 50 (2014) 189–199.
DOI: 10.1016/j.watres.2013.12.001
Google Scholar
[2]
V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: A review, Science of the Total Environment 408 (2009) 1–13.
DOI: 10.1016/j.scitotenv.2009.09.027
Google Scholar
[3]
G. Uslu, A. Demirci, J.M. Regan, Disinfection of synthetic municipal wastewater effluent by pulsed UV-light treatment, American Society of Agricultural and Biological Engineers Annual International Meeting (2013).
DOI: 10.13031/aim.20131592785
Google Scholar
[4]
Y. Z. Guo, Y. Z. Yu, M. Li, G. Y. Yan, Progress on drinking water treatment with chlorine dioxide, Advanced Materials Research (2014).
Google Scholar
[5]
E. You, W.K. O'neil, G. Wetterau, E. Ochoa, Enhanced coagulation and in-line filtration with membranes to optimize surface water treatment for regulatory compliance, AMTA/AWWA Membrane Technology Conference and Exposition (2013).
Google Scholar
[6]
K. Lutchmiah, A.R.D. Verliefde, K. Roest, L.C. Rietveld, E.R. Cornelissen, Forward osmosis for application in wastewater treatment: A review, Water Research 58 (2014) 179–197.
DOI: 10.1016/j.watres.2014.03.045
Google Scholar
[7]
Chan-Hee Won, J. Choi, J. Chung, Evaluation of optimal reuse system for hydrofluoric acid wastewater, Journal of Hazardous Materials 240 (2012) 110– 117.
DOI: 10.1016/j.jhazmat.2012.08.004
Google Scholar
[8]
Hasan Al Abdulgader, V. Kochkodan, N. Hila, Hybrid ion exchange – Pressure driven membrane processes in water treatment: A review, Separation and Purification Technology 116 (2013) 253–264.
DOI: 10.1016/j.seppur.2013.05.052
Google Scholar
[9]
A. S. Al-Hobaib, A. A. Al-Suhybani, Removal of uranyl ions from aqueous solutions using barium titanate, Radioanal Nucl Chem 299 (2014) 559–567.
DOI: 10.1007/s10967-013-2772-8
Google Scholar
[10]
M. Dyson, Process water: A new trend in mobile water treatment plant hire, Filtration and Separation 51 (2014) 28-30.
DOI: 10.1016/s0015-1882(14)70033-3
Google Scholar
[11]
I. Sarbu, O. Bancea, Environment protection assurance using efficient plants and procedures for sewage treatment, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management 1 (2013) 377-384.
DOI: 10.5593/sgem2013/be5.v1/s20.050
Google Scholar
[12]
C. Lyon, Mobile treatment units a large range of equipment and services, Eau, I'INDUSTRIE, les Nuisances 305 (2007) 69-80.
Google Scholar
[13]
P. Bhattacharya, A. Roya, S. Sarkar, S. Ghosha, S. Majumdar, S. Chakraborty, S. Mandal, A. Mukhopadhyay, S. Bandyopadhyay, Combination technology of ceramic microfiltration and reverse osmosis for tannery waste water recovery, Water Resources and Industry 3 (2013).
DOI: 10.1016/j.wri.2013.09.002
Google Scholar
[14]
L. Malaeb, G. M. Ayoub, Reverse osmosis technology for water treatment: State of the art review, Desalination 267 (2011) 1–8.
DOI: 10.1016/j.desal.2010.09.001
Google Scholar
[15]
A. Subramani, J. G. Jacangelo, Treatment technologies for reverse osmosis concentrate volume minimization: A review, Separation and Purification Technology 122 (2014) 472–489.
DOI: 10.1016/j.seppur.2013.12.004
Google Scholar
[16]
F. Manenti, Considerations on nonlinear model predictive control techniques, Computers and Chemical Engineering 35 (2011) 2491–2509.
DOI: 10.1016/j.compchemeng.2011.04.009
Google Scholar
[17]
A. Abbas, Model predictive control of a reverse osmosis desalination unit, Desalination 194 (2006) 268–280.
DOI: 10.1016/j.desal.2005.10.033
Google Scholar
[18]
Information on site of LLC «Commercial industrial enterprise «Sibnefteprovodtehservis», http: /sibnpts. ru/catalog_tech.
Google Scholar
[19]
Information on site of «Container Leasing», http: /www. contlease. ru/catalog.
Google Scholar