[1]
H.R. Ammar, A.M. Samuel and F.H. Samuel, Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al–Si casting alloys, Materials Science and Engineering: A. 473 (2008) 65-75.
DOI: 10.1016/j.msea.2007.03.112
Google Scholar
[2]
M. Kobayashi, H. Hara, H. Toda1, D. Sugiyama and N. Kuroda, Fatigue behaviour of hot worked cast aluminium alloys with different Si contents, International Journal of Cast Metals Research. 25 (2012) 31-37.
DOI: 10.1179/1743133611y.0000000012
Google Scholar
[3]
M.R. Ghomashchi and K.N. Stratford, Factors influencing the production of high integrity aluminium/silicon alloy components by die and squeeze casting processes, Journal of Materials Processing Technology. 38 (1993) 303-326.
DOI: 10.1016/0924-0136(93)90204-j
Google Scholar
[4]
Ken Gall, Nancy Yang, Mark Horstemeyer, David L. McDowell and Jinghong Fan, The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy, Metallurgical and Materials Transactions A. 30 (1999) 3079-3088.
DOI: 10.1007/s11661-999-0218-2
Google Scholar
[5]
Y. Xue, C.L. Burton, M.F. Horstemeyer, D.L. McDowell, and J.T. Berry, Multistage Fatigue Modeling of Cast A356-T6 and A380-F Aluminum Alloys, Metallurgical and Materials Transactions B. 38 (2007) 601-606.
DOI: 10.1007/s11663-007-9062-1
Google Scholar
[6]
Jinghong Fan and Su Hao, A design-centered approach in developing Al-Si-based light-weight alloys with enhanced fatigue life and strength, Journal of Computer-Aided Materials Design. 11 (2004) 139-161.
DOI: 10.1007/s10820-005-3172-3
Google Scholar
[7]
Ken Gall, Mark F. Horstemeyer, Brett W. Degner, David L. McDowell and Jinghong Fan, On the driving force for fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy, International Journal of Fracture. 108 (2001) 207-233.
DOI: 10.1023/a:1011033304600
Google Scholar
[8]
A. J. Moffat, B. G. Mellor, I. Sinclair and P. A. S. Reed, The mechanisms of long fatigue crack growth behaviour in Al–Si casting alloys at room and elevated temperature, Materials Science and Technology. 23 (2007) 1396-1401.
DOI: 10.1179/174328407x243988
Google Scholar
[9]
Seishi Nishido, Makoto Kaneso, Toshiro Kobayashi, Hiroyuki Toda, Role of Si particle damage on fatigue characteristics of cast Al–Si alloys, International Journal of Cast Metals Research. 17 (2004) 345-350.
DOI: 10.1179/136404604225022702
Google Scholar
[10]
L.A. Dobrzañski, R. Maniara, J.H. Sokolowski, The effect of cooling rate on microstructure and mechanical properties of AC AlSi9Cu alloy, Archives of Materials Science and Engineering. 28 (2007) 105-112.
Google Scholar
[11]
W. Kurz and D. J. Fisher, Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Switzerland, (1986).
Google Scholar
[12]
M. C. Flemings, Solidification Processing, 1st ed., McGraw-Hill, New York, (1974).
Google Scholar
[13]
D. Casellas, R. Pérez and J.M. Prado, Fatigue variability in Al–Si cast alloys, Materials Science and Engineering: A. 398 (2005) 171-179.
DOI: 10.1016/j.msea.2005.03.034
Google Scholar
[14]
M. Fatih Kilicaslan, Orhan Uzun, Fikret Yilmaz and Seyit Caglar, Effect of Different Production Methods on the Mechanical and Microstructural Properties of Hypereutectic Al-Si Alloys, Metallurgical and Materials Transactions B. 45 (2014).
DOI: 10.1007/s11663-014-0098-8
Google Scholar
[15]
Niyas Salim, M. Arun and Anup Kumar, Effect of Mg Enhancement in the Microstructure and Mechanical Properties of AC2A Aluminium Alloy, International Journal of Research in Engineering & Technology. 2 (2014) 139-148.
Google Scholar