Processing Techniques of a Silicon Carbide Heat Exchanger and its Capable Properties – A Review

Article Preview

Abstract:

Silicon carbides is a composite ceramic material produced from inorganic non-metallic substances, formed from the molten mass which solidifies on cooling and simultaneously matured by the action of heat. It is used in various applications such as grinding wheels, filtration of gases and water, absorption, catalyst supports, concentrated solar powers, thermoelectric conversion etc. The modern usage of silicon carbide is fabricated as a heat exchanger for high temperature applications. Leaving behind steel and aluminium, silicon carbide has an excellent temperature withstanding capability of 1425°C. It is resistant to corrosion and chemical erosion. Modern fusion reactors, Stirling cycle based gas turbines, evaporators in evaporative cooling system for air condition and generator in LiBr/H2O absorption chillers for air conditioning those systems heat transfer rate can be improved by replacing a present heat exchanger with silicon carbide heat exchanger. This review presents a detailed discussion about processing technique of such a silicon carbide. Modern known processing techniques are partial sintering, direct foaming, replica, sacrificial template and bonding techniques. The full potential of these materials can be achieved when properties are directed over specified application. While eyeing over full potential it is highly dependent on processing techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

513-517

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jung- HyeEom, Young -Wook Kim, Santosh Raju, Processing and properties of macroporous silicon carbide ceramics: A review, Journal of Asian American societies. 1 (2013) 220-242.

DOI: 10.1016/j.jascer.2013.07.003

Google Scholar

[2] S. Richlen, B.D. Foster, J. B. Patton, A survey of ceramic heat exchanger opportunities, Advances in Ceramics: Ceramics in Heat Exchangers. 14 (1985) 3-14.

Google Scholar

[3] J. Schulte-Fischedick, V. Dreißigacker, R. Tamme, An innovative ceramic high temperature plate-fin heat exchanger for EFCC processes, Applied Thermal Engineering. 27 (2007) 1285-1294.

DOI: 10.1016/j.applthermaleng.2006.11.007

Google Scholar

[4] M. Steen, L. Ranzani, Potential of SiC as a heat exchanger material in a combined cycle plant, Ceramics International. 26 (2000) 849-854.

DOI: 10.1016/s0272-8842(00)00027-4

Google Scholar

[5] R. Smyth, The use of high temperature heat exchangers to increase power plant thermal efficiency, Energy Conversion Engineering Conference. (1997) 1690-1695.

DOI: 10.1109/iecec.1997.656676

Google Scholar

[6] H. -C. Liu, H. Tsuru, A.G. Cooper, F.B. Prinz, Rapid prototyping methods of silicon carbide micro heat exchangers, Journal of Engineering Manufacture. 219 (2005) 525-538.

DOI: 10.1243/095440505x32463

Google Scholar

[7] V. Suwanmethanond, E. Goo, P.K.T. Liu, G. Johnston, M. Sahimi and T. Tsotsis, Industrial Engineering Chemical. Research. 39(2000) 3264–3271.

DOI: 10.1021/ie0000156

Google Scholar

[8] M. Fukushima, Y. Zhou, H. Miyazaki, Y. Yoshizawa, K. Hirao, Y. Iwamoto, S. Yamazaki and T. Nagano, J. American Ceramic Society. 89 (2006) 1523–1529.

DOI: 10.1111/j.1551-2916.2006.00931.x

Google Scholar

[9] M. Fukushima, Y. Zhou and Y. Yoshizawa, Journal of Member of Science. 339 (2009) 78–84. China. 21(2011) 1329-1334.

Google Scholar

[10] J. Ihle, M. Herrmann and J. Adler, J. European Ceramic Society. 25 (2005) 1005–1013.

Google Scholar

[11] M. Fukushima, Y. Zhou, Y. Yoshizawa and K. Hirao, European Ceramic Society. 28 (2008) 1043-1048.

Google Scholar

[12] Z.Y. Deng, J. She, Y. Inagaki, J.F. Yang, T. Ohji and Y. Tanaka, J. European Ceramic Society. 24(2004) 2055-(2059).

DOI: 10.1016/s0955-2219(03)00365-0

Google Scholar

[13] H. Tanaka, T. Nishimura, N. Hirosaki and D.H. Jeong, Journal of Ceramic Society of Japan. 113 (2005) 51-54.

Google Scholar

[14] M. Hotta, H. Kita, H. Matsuura, N. Enomoto and J. Hojo, J. Ceram. Soc. Jpn. 120 (2012) 243–247.

Google Scholar

[15] Y. Zhou, M. Fukushima, H. Miyazaki, Y. Yoshizawa, K. Hirao, Y. Iwamoto. Sato, Journal of Science. 369 (2011) 112-118.

Google Scholar

[16] S.H. Kim, Y.W. Kim, J.Y. Yun and H.D. Kim, Journal of Korean Ceramic Society. 41 (2004) 541-547.

Google Scholar

[17] C. Reynaud and F. Thevenot, Journal of Material Science. 19 (2000) 871–874.

Google Scholar

[18] G. Liu, P. Dai, Y. Wang, J. Yang and Y. Zhang, Journal of European Ceramic Society. 31 (2011) 847-854.

Google Scholar

[19] Y. Kim, K. Min, J. Shim and D.J. Kim, Journal of European Ceramic Society. 32 (2012) 3611-3615.

Google Scholar

[20] F. Meschke, G. Riebler, V. Hessel, J. Schurer, T. Baier, Hermetic gas tight ceramic micro Reactors, Chemical Engineering Technology. (2005).

DOI: 10.1002/ceat.200500004

Google Scholar

[21] E. Velasco Gómez, F.J. Rey Martínez, F. Varela Diez, M.J. Molina Leyva, R. Herrero Martín, Description and experimental results of a semi- indirect ceramic evaporative cooler, International journal of refrigeration. 28 (2005) 654-662.

DOI: 10.1016/j.ijrefrig.2005.01.004

Google Scholar

[22] H.J. Strumpf, T.L. Stillwagon, D.M. Kotchick, M.G. Coombs, Advanced industrial ceramic Heat pipe recuperators, Heat Recovery Systems & CHP. 8 (1988) 235-246.

DOI: 10.1016/0890-4332(88)90059-2

Google Scholar

[23] C. Bower, A. Ortega, P. Skandakumaran, R. Vaidyanathan, T. Phillips, Heat transfer in water Cooled silicon carbide milli-channel heat sinks for high power electronic applications, Journal of Heat Transfer. 127 (2005) 59-65.

DOI: 10.1115/1.1852494

Google Scholar