[1]
G. Korotcenkov and V. Sysoev, Chapter 3: Conductometric metal oxide gas sensors. in: Chemical Sensors: Comprehensive Sensor Technologie, edited by G. Korotcenkov, volume 4 of Solid State Devices, Momentum Press, New York, USA (2011), pp.39-186.
DOI: 10.5643/9781606503171
Google Scholar
[2]
G. Korotcenkov, V. Brinzari, J. Schwank, A. Cerneavschi, Possibilities of aerosol technology for deposition of SnO2-based films with improved gas sensing characteristics, J. Mater. Sci. Eng. C Vol. 19 (1-2) (2001), pp.73-77.
DOI: 10.1016/s0928-4931(01)00445-3
Google Scholar
[3]
G. Korotcenkov, B.K. Cho and V. Brinzari, Spray pyrolysis of metal oxides SnO2 and In2O3 as an example of thin film technology: Advantages and limitations for application in conductometric gas sensors, Adv. Mater. Res. Vol. 748 (2013), pp.22-27.
DOI: 10.4028/www.scientific.net/amr.748.22
Google Scholar
[4]
G. Korotcenkov, I. Blinov, M. Ivanov and J.R. Stetter, Ozone sensors on the base of SnO2 thin films deposited by spray pyrolysis, Sens. Actuators B Vol. 120 (2007), pp.679-686.
DOI: 10.1016/j.snb.2006.03.029
Google Scholar
[5]
G. Korotcenkov, A. Cerneavschi, V. Brinzari, A. Vasiliev, A. Cornet, J. Morante, A. Cabot, J. Arbiol, In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors. Sens. Actuators B Vol. 99 (2004), pp.304-310.
DOI: 10.1016/j.snb.2003.01.001
Google Scholar
[6]
G. Korotcenkov, B.K. Cho, Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement, Sens. Actuators B Vol. 156 (2011), pp.527-538.
DOI: 10.1016/j.snb.2011.02.024
Google Scholar
[7]
G. Kiriakidis, M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis and V. Cimalla, Ozone sensing properties of polycrystalline indium oxide films at room temperature, Phys. Status Sol. (a) Vol. 185(1) (2001), pp.27-32.
DOI: 10.1002/1521-396x(200105)185:1<27::aid-pssa27>3.0.co;2-u
Google Scholar
[8]
M. Suchea, N. Katsarakis, S. Christoulakis, S. Nikolopoulou and G. Kiriakidis, Low temperature indium oxide gas sensors, Sens. Actuators B Vol. 118 (2006), p.135–141.
DOI: 10.1016/j.snb.2006.04.020
Google Scholar
[9]
A. Gurlo, M. Ivanovskaya, N. Barsan, U. Weimar and W. Gopel, Grain size control in ananocrystalline In2O3 semiconductor gas sensors, Sens. Actuators B Vol. 44 (1997), pp.327-333.
DOI: 10.1016/s0925-4005(97)00199-8
Google Scholar
[10]
J.W. Gardner, A non-linear diffusion-reaction model of electrical conduction in semiconductor gas sensors, Sens. Actuators B Vol. 1 (1990), p.166–170.
DOI: 10.1016/0925-4005(90)80194-5
Google Scholar
[11]
G. Korotcenkov, V. Brinzari, M. Ivanov, A. Cerneavschi, J. Rodriguez, A. Cirera, A. Cornet and J. Morante, Structural stability of In2O3 films deposited by spray pyrolysis during thermal annealing, Thin Solid Films Vol. 479 (1-2) (2005).
DOI: 10.1016/j.tsf.2004.11.107
Google Scholar
[12]
G. Korotcenkov and B.K. Cho, Thin film SnO2-based gas sensors: Film thickness influence, Sens. Actuators B Vol. 142 (2009), pp.321-330.
DOI: 10.1016/j.snb.2009.08.006
Google Scholar
[13]
Th. Becker, L. Tomasi, Chr. Bosch-v. Braunmuhl, G. Muller, G. Sberveglieri, G. Faglia and E. Comini, Ozone detection using low-power-consumption metal-oxide gas sensors, Sens. Actuators B Vol. 74 (1999), p.229–232.
DOI: 10.1016/s0924-4247(98)00301-x
Google Scholar
[14]
V. Krivetskiy, M. Rumyantseva and A. Gaskov, Design, synthesis and application of metal oxide based sensing elements: A chemical principles approach, in: Metal Oxide Nanomaterials for Chemical Sensors, edited by M.A. Carpenter, S. Mathur, and A. Kolmakov, Springer, New York (2013).
DOI: 10.1007/978-1-4614-5395-6_3
Google Scholar
[15]
V. Brinzari, G. Korotcenkov, J. Schwank, V. Lantto, S. Saukko, V. Golovanov, Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution. Thin Solid Films Vol. 408 (2002), pp.51-58.
DOI: 10.1016/s0040-6090(02)00086-x
Google Scholar