Research Progress of Surface Modification of Aluminum Powders for Corrosion Protection

Article Preview

Abstract:

As an important metallic powder, aluminum powders are used widely in coating, inks and plastic industry. However, it is necessary to treat the aluminum powders first to improve the properties of weather-resistance, anti-corrosion in acidic or basic media and compatibility with resin. The methods of surface treatment of aluminum powders including encapsulation and using corrosive inhibitors are summarized. The kinds of corrosive inhibitors used in the method of corrosion inhibition and their mechanisms are also reviewed. The processes and technologies of inorganic passivation, encapsulation by polymer absorption and by in situ polymerization are introduced. The research directions of aluminum powders are also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-75

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Anthony. Paint pretreatment for aluminum, J. Metal Finishing, 2000, 98(6): 74-79.

Google Scholar

[2] K.C. Emregül, A.A. Aksüt. The effect of sodium molybdate on the pitting corrosion of aluminum, J. Corrosion Science, 2003, 45(11): 2415-2433.

DOI: 10.1016/s0010-938x(03)00097-0

Google Scholar

[3] Bommarito GM, Pocius AV. An electrochemical study of the changes in the passivation of an aluminum alloy surface induced by the presence of a self-assembled monolayer, J. Thin Solid Films, 1998, 327-329(31): 481-485.

DOI: 10.1016/s0040-6090(98)00692-0

Google Scholar

[4] B. Müller. Corrosion inhibition of aluminium and zinc pigments by saccharides, J. Corrosion Science, 2002, 44: 1583-1591.

DOI: 10.1016/s0010-938x(01)00170-6

Google Scholar

[5] E.E. Foad El-Sherbini, S.M. Abd-El-Wahab, M.A. Deyab. Studies on corrosion inhibition of aluminum in 1. 0 M HCl and 1. 0 M H2SO4 solutions by ethoxylated fatty acids, J. Materials Chemistry and Physics, 2003, 82: 631-637.

DOI: 10.1016/s0254-0584(03)00336-5

Google Scholar

[6] B. Müller, M. Shahid, G. Kinet. Nitro-and aminopenols as corrosion inhibitors for aluminium and zinc pigments, J. Corrosion Science, 1999, 41: 1323-1331.

DOI: 10.1016/s0010-938x(98)00186-3

Google Scholar

[7] A. Y. El-Etre. Inhibition of acid corrosion of aluminum using vanillin, J. Corrosion Science, 2001, 43: 1031-1039.

DOI: 10.1016/s0010-938x(00)00127-x

Google Scholar

[8] B. Müller, A. Paulus, B. Lettmann, et al. Amphiphilic Maleic Acid Copolymers as Corrosion Inhibitors for Aluminum Pigment, J. Journal of Applied Polymer Science, 1998, 69: 2169-2174.

DOI: 10.1002/(sici)1097-4628(19980912)69:11<2169::aid-app8>3.0.co;2-e

Google Scholar

[9] B. Müller, T. Schmelich. High-Molecular Weight Styrene-Maleic Acid Copolymers as Corrosion Inhibitors for Aluminium Pigments, J. Corrosion Science, 1995, 37: 877-883.

DOI: 10.1016/0010-938x(94)00171-2

Google Scholar

[10] B. Müller. Citric acid as corrosion inhibitor for aluminium pigment, J. Corrosion Science, 2004, 46: 159-167.

DOI: 10.1016/s0010-938x(03)00191-4

Google Scholar

[11] Bodo Müller. Polymeric corrosion inhibitors for aluminum pigment, J. Reactive& Functional Polymers, 1999, 39: 165-177.

DOI: 10.1016/s1381-5148(97)00179-x

Google Scholar

[12] Müller B, Fischer S. Epoxy ester resins as corrosion inhibitors for aluminium and zinc pigments, J. Corrosion Science, 2006, 48(9): 2406-2416.

DOI: 10.1016/j.corsci.2005.10.002

Google Scholar

[13] Müller B. Paint resins stabilize aluminium pigment, J. European Coatings Journal, 2001(5): 81-92.

Google Scholar

[14] Glebov E M, Yuan L, Krishtopa L G, et al. Coating of metal powders with polymers in supercritical carbon dioxide, J. Industrial and Engineering Chemistry Research, 2001, 40(19): 4058-4068.

DOI: 10.1021/ie0100939

Google Scholar

[15] K.H. Zabel, R.E. Boomgaard, G.E. Thompson, et al. Properties of ketimine/acetoacetate coated aluminum substrates, J. Progress in Organic Coatings, 1998, 34: 236-244.

DOI: 10.1016/s0300-9440(98)00016-2

Google Scholar

[16] Yang X.F., Tallman D.E., Gelling V.J., et al. Use of a sol-gel conversion coating for aluminum corrosion protection, J. Surface and Coatings Technology, 2001, 140(1): 44-50.

DOI: 10.1016/s0257-8972(01)01002-7

Google Scholar

[17] Shoichiro Yano, Keisuke Iwata, Kimio Kurita. Physical properties and structure of organic–inorganic hybrid materials produced by sol-gel process, J. Materials Science and Engineering C, 1998, 6, 75-90.

DOI: 10.1016/s0928-4931(98)00043-5

Google Scholar

[18] A. Kiehl, K. Greiwe. Encapsulated aluminium pigments, J. Progress in Organic Coatings, 1999, 37: 179-183.

DOI: 10.1016/s0300-9440(99)00075-2

Google Scholar

[19] Li L J, Pi P H, Wen X F, et al. Optimization of sol–gel coatings on the surface of aluminum pigments for corrosion protection, J. Corrosion Science, 2008, 50: 795-803.

DOI: 10.1016/j.corsci.2007.11.002

Google Scholar

[20] Li L J, Pi P H, Wen X F, et al. Aluminum pigments encapsulated by inorganic–organic hybrid coatings and their stability in alkaline aqueous media, J. Journal of Coating Technical Research, 2008, 5 (1) : 77-83.

DOI: 10.1007/s11998-007-9053-9

Google Scholar

[21] Yasuda H. Plasma Polymerization. New York Academic, (1985).

Google Scholar

[22] Y. Iriyama, T. Ihara, M. Kiboku. Plasma polymerization of tetraethoxysilane on aluminum granules for corrosion protection, J. Thin Solid Films, 1996, 287: 169-173.

DOI: 10.1016/s0040-6090(96)08780-9

Google Scholar

[23] Batzilla Th., Tulke A. Preparation of encapsulated aluminum pigments by emulsion polymerization and their characterization, J. Journal of Coatings Technology, 1998, 70: 77-83.

DOI: 10.1007/bf02730153

Google Scholar

[24] Hui Liu, Hongqi Ye, Yingchao Zhang. Preparation and characterization of PMMA/flaky aluminum composite particle in the presence of MPS, J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 315(1-3): 1-6.

DOI: 10.1016/j.colsurfa.2007.06.057

Google Scholar

[25] Isao Kimura, Yoshinari Taguchi, Haruyuki Yoshii, et al. Encapsulation of aluminum flakes by dispersion polymerization of styrene in a nonaqueous system with reactive surfactants, J. Journal of applied polymer science, 2001, 81: 675-683.

DOI: 10.1002/app.1484

Google Scholar

[26] Hui Liu, Hongqi Ye and Xinde Tang. Aluminum pigment encapsulated by in situ copolymerization of styrene and maleic acid, J. Applied Surface Science, 2007, 254(2): 616-620.

DOI: 10.1016/j.apsusc.2007.06.047

Google Scholar

[27] Carpenter. Nitro-substituted polymeric corrosion inhibitors for aluminum flake pigment, U.S. Patent 5389139, 1995-2-14.

Google Scholar

[28] Nishikawa Shuichi, Kojo Kazuo. Resin-Coated Aluminum Pigment, JP Patent 2005146111A, 2005-6-9.

Google Scholar

[29] Nishikawa Shuichi. Silica-coated Aluminum Pigment and Its Manufacturing Method, JP Patent 2002088274, 2002-3-27.

Google Scholar

[30] Russell L. Ferguson. Surface-Treated Aluminum Pigments for Environmental Compliance, http: /www. pcimag. com, (2005).

Google Scholar