Research on the Influence of Geometry and Positioning on Laser Sintered Parts

Article Preview

Abstract:

In contrary to the traditional injection molding process, the selective laser sintering process offers a nearly unlimited freedom of design. However, the dimensional accuracy of an SLS part is significantly influenced by the process, the material and its design. In order to achieve high accuracy, the parts need to be repositioned, parameters readjusted and parts consistently rebuilt in an iterative process. In industry this process leads to enormous consumption of process time and polymer powder.Increased dimensional inaccuracy is often caused by the accumulation of polymer melt and the resulting shrinkage effects. Thus, highly accurate SLS parts can be manufactured using three dimensional, filigree structures in order to replace volumetric part sections. In this paper, the potential of using 3D-structures, for enhancing SLS parts’ accuracy is shown. Thus, influencing parameters, such as positioning, scale, process time and geometry feature are systematically varied. Additionally the effect of adjacently positioned parts influencing the dimensional accuracy shall be investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-114

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Rietzel: Werkstoffverhalten und Prozessanalyse beim Laser-Sintern von Thermoplasten, Dissertation (2011).

Google Scholar

[2] W. Kaddar: Die generative Fertigung mittels Laser-Sintern: Scanstrategien, Einflüsse verschiedener Prozess-parameter auf die mechanischen und optischen Eigenschaften beim LS von Thermoplasten und deren Nachbearbeitungsmöglichkeiten, Dissertation, (2010).

Google Scholar

[3] D. Rietzel, E. Schmachtenberg, et al.: Neue Kunststoffpulver für das Selektive Lasersintern, Kunststoffe, Carl Hanser Verlag, München, 2/(2008).

Google Scholar

[4] S. Singh, A. Sachdeva, V.S. Sharma: Investigation of Dimensional Accuracy/Mechanical Properties of Part Produced by Selective Laser Sintering, International Journal of Applied Science and Engineering, 10, 1, 2012, pp.59-68.

Google Scholar

[5] K. Wudy, D. Drummer, F. Kühnlein, et al.: Influence of degradation behavior of polyamide 12 powders in laser sintering process on produced part, AIP Conference Proceedings 1593, 691, (2014).

DOI: 10.1063/1.4873873

Google Scholar

[6] S. Berretta, O. Ghita, K. E. Evans, et al.: Size, Shape and Flow of powders for use in Selective Laser Sintering (SLS, Proceedings of the 6th International Conference on Advanced Research and Rapid Prototyping, VR@P, Leira, Portugal, 2013, pp.49-54.

DOI: 10.1201/b15961-11

Google Scholar

[7] J.P. Kruth, G. Levy, F. Klocke, et al.: Consolidation phenomena in laser and powder-bed based layered manufacturin, CIRP Annals - Manufacturing Technology Volume 56, Issue 2, 2007, pp.730-759.

DOI: 10.1016/j.cirp.2007.10.004

Google Scholar

[8] A. Wegner, G. Witt: Ursachen für eine mangelnde Reproduzierbarkeit beim Laser-Sintern von Kunststoff-bauteile, RTejournal, Issue 10, (2013).

Google Scholar

[9] Y. Tang, H. T. Loh, J. Y. H. Fuh, et al.: Accuracy Analysis and improvement for Direct Laser Sintering, MIT Libraries.

Google Scholar

[10] A. Wegner, G. Witt: Design rules for laser sintering, Journal of Plastics Technology, Issue 03, (2012).

Google Scholar

[11] C. C. Seepersad, T. Govett, K. Kim, et al.: A Designer's Guide for Dimensioning and Tolerancing SLS Parts, Solid Freeform Fabrication Symposium, Austin, TX, (2012).

Google Scholar

[12] R. -J. Wang, L. Wang, L. Zhao, et al.: Influence of process parameters on part shrinkage in SLS, The International Journal of Advanced Manufacturing Technology, Volume 33, Issue 5-6, (2007).

Google Scholar

[13] N. Raghunath, M. Pulak, Pandey: Improving accuracy through shrink-age modelling by using Taguchi method in selective laser sintering, International Journal of Machine Tools and Manufacture, Volume 47, Issue 6, (2006).

DOI: 10.1016/j.ijmachtools.2006.07.001

Google Scholar

[14] H. J. Yang, P. J. Hwang, S. H. Lee: A study on shrinkage compensation of the SLS process by using the Taguchi method", International Journal of Machine Tools and Manufacture, Volume 42, Issue 11, (2002).

DOI: 10.1016/s0890-6955(02)00070-6

Google Scholar

[15] A. Gebhardt, J-S. Hötter, M. Fateri: Generative Fertigungsverfahren, 4. Auflage., Carl-Hanser-Verlag, München, (2007).

Google Scholar

[16] N. Hopkinson, R. J. M. Hague, P. M. Dickens: Rapid manufacturing - An industrial revolution for the digital age, John Wiley & Sons, Inc., Chichester, England, (2006).

DOI: 10.1002/0470033991.ch1

Google Scholar

[17] B. Wang: Integrated product, process and enterprise design, Chapman & Hall, London, (1997).

Google Scholar

[18] S. Kreitlein, A. Höft, S. Schwender, J. Franke: Green Factories Bavaria: A Network of Distributed Learning Factories for Energy Efficient Production. In: 5th Conference on Learning Factories 32(0), S. 58-63, (2015).

DOI: 10.1016/j.procir.2015.02.219

Google Scholar

[19] S. Freiberger , J. Böhner, S. Kreitlein, R. Steinhilper, J. Franke: Green Factory Bavaria Methodenentwicklung und Wissenstransfer zur Energieeffizienzsteigerung. In: www. elektrotechnik. de - Automation Valley 2012, elektrotechnik, Vogel Media Business Verlag, (2012).

DOI: 10.37544/1436-4980-2012-9-629

Google Scholar

[20] F. Karl, P. Schnellbach, G. Reinhart, J. Böhner, S. Freiberger, R. Steinhilper, S. Kreitlein, J. Franke, T. Maier, J. Pohl, M. F. Zäh: Green Factory. Bavaria Demonstrations-, Lehr- und Forschungsplattform zur Erhöhung der Energieeffizienz. In: wt Werkstattstechnik online Jahrgang 102 (2012).

DOI: 10.37544/1436-4980-2012-9-629

Google Scholar