[1]
BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., BDEW-Strompreisanalyse Juni 2014, Berlin, (2014).
Google Scholar
[2]
VDI Zentrum Ressourceneffizienz GmbH, Umsetzung von Ressourceneffizienz-Maßnahmen in KMU und ihre Treiber, Berlin, (2011).
Google Scholar
[3]
Volkswagen Aktiengesellschaft, sustainability report 2014, Wolfsburg (2015).
Google Scholar
[4]
BMW Group, Sustainable value report 2014, (2015).
Google Scholar
[5]
Universität Stuttgart, Institut für Energieeffizienz in der Produktion (EEP), Auswertung 3. Energieeffizienz-Index Winter 2014/2015, Stuttgart (2015).
Google Scholar
[6]
E. Mills, Building commissioning: a golden opportunity for reducing energy costs and greenhouse gas emissions in the United States, Energy Efficiency 4, no. 2 (2011) 145-173.
DOI: 10.1007/s12053-011-9116-8
Google Scholar
[7]
G. Reinhart, F. Karl, P. Krebs, S. Reinhardt, Energiewertstrom – Eine Methode zur ganzheitlichen Erhöhung der Energieproduktivität, ZWF 105 (2010) (2010) 870–875.
DOI: 10.3139/104.110401
Google Scholar
[8]
R. Gleich, Energiecontrolling, first ed., Haufe Verlag, Freiburg, (2014).
Google Scholar
[9]
V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM computing surveys (CSUR) 41, no. 3 (2009) 15.
DOI: 10.1145/1541880.1541882
Google Scholar
[10]
D. Cheboli, Anomaly detection of time series, PhD diss., University of Minnesota, (2010).
Google Scholar
[11]
Y. Zhang, W. Chen, J. Black, Anomaly detection in premise energy consumption data, In Power and Energy Society General Meeting, 2011 IEEE, pp.1-8. IEEE, (2011).
DOI: 10.1109/pes.2011.6039858
Google Scholar
[12]
V. Chandola, A. Banerjee, V. Kumar, Anomaly detection for discrete sequences: A survey, Knowledge and Data Engineering, IEEE Transactions on 24, no. 5 (2012) 823-839.
DOI: 10.1109/tkde.2010.235
Google Scholar
[13]
M. Gupta, J. Gao, C. Aggarwal, J. Han, Outlier detection for temporal data, Synthesis Lectures on Data Mining and Knowledge Discovery 5, no. 1 (2014) 1-129.
DOI: 10.2200/s00573ed1v01y201403dmk008
Google Scholar
[14]
J.E. Seem, Using intelligent data analysis to detect abnormal energy consumption in buildings, Energy and Buildings 39, no. 1 (2007): 52-58.
DOI: 10.1016/j.enbuild.2006.03.033
Google Scholar
[15]
D. Fisch, T. Gruber, B. Sick, Swiftrule: Mining comprehensible classification rules for time series analysis, Knowledge and Data Engineering, IEEE Transactions on 23, no. 5 (2011) 774-787.
DOI: 10.1109/tkde.2010.161
Google Scholar
[16]
D. De Silva, X. Yu, D. Alahakoon, G. Holmes, A data mining framework for electricity consumption analysis from meter data, Industrial Informatics, IEEE Transactions on 7, no. 3 (2011) 399-407.
DOI: 10.1109/tii.2011.2158844
Google Scholar
[17]
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, E. Keogh, Querying and mining of time series data: experimental comparison of representations and distance measures, Proceedings of the VLDB Endowment 1, no. 2 (2008) 1542-1552.
DOI: 10.14778/1454159.1454226
Google Scholar
[18]
T. Fu, A review on time series data mining, Engineering Applications of Artificial Intelligence 24, no. 1 (2011) 164-181.
DOI: 10.1016/j.engappai.2010.09.007
Google Scholar
[19]
E. Keogh, S. Kasetty, On the need for time series data mining benchmarks: a survey and empirical demonstration, Data Mining and knowledge discovery 7, no. 4 (2003) 349-371.
DOI: 10.1145/775047.775062
Google Scholar
[20]
U. Rebbapragada, P. Protopapas, C.E. Brodley, C. Alcock, Finding anomalous periodic time series, Machine learning 74, no. 3 (2009) 281-313.
DOI: 10.1007/s10994-008-5093-3
Google Scholar
[21]
V. Chandola, V. Mithal, V. Kumar, Comparative evaluation of anomaly detection techniques for sequence data, In 2008 Eighth IEEE International Conference on Data Mining, pp.743-748. IEEE, (2008).
DOI: 10.1109/icdm.2008.151
Google Scholar
[22]
E. Keogh, J. Lin, Clustering of time-series subsequences is meaningless: implications for previous and future research, Knowledge and information systems 8, no. 2 (2005) 154-177.
DOI: 10.1007/s10115-004-0172-7
Google Scholar
[23]
G. Kant, K.S. Sangwan, Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining, Journal of Cleaner Production 83 (2014) 151-164.
DOI: 10.1016/j.jclepro.2014.07.073
Google Scholar
[24]
W. Li, S. Kara, An empirical model for predicting energy consumption of manufacturing processes: a case of turning process, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 225, no. 9 (2011).
DOI: 10.1177/2041297511398541
Google Scholar
[25]
B. Chen, M. Sinn, J. Ploennigs, A. Schumann, Statistical Anomaly Detection in Mean and Variation of Energy Consumption, In Pattern Recognition (ICPR), 2014 22nd International Conference on, pp.3570-3575. IEEE, (2014).
DOI: 10.1109/icpr.2014.614
Google Scholar
[26]
S. -J. Shin, J. Woo, S. Rachuri, Predictive analytics model for power consumption in manufacturing, Procedia CIRP 15 (2014) 153-158.
DOI: 10.1016/j.procir.2014.06.036
Google Scholar
[27]
C.V. Le, C.K. Pang, O.P. Gan, X.M. Chee, D.H. Zhang, M. Luo, H.L. Chan, F.L. Lewis, Classification of energy consumption patterns for energy audit and machine scheduling in industrial manufacturing systems, Transactions of the Institute of Measurement and Control 35, no. 5 (2013).
DOI: 10.1177/0142331212460883
Google Scholar
[28]
G. Prasad, E. Swidenbank, B.W. Hogg, A novel performance monitoring strategy for economical thermal power plant operation, IEEE Transactions on Energy Conversion 14, no. 3 (1999) 802-809.
DOI: 10.1109/60.790955
Google Scholar
[29]
H. Zhao, F. Magoulès, A review on the prediction of building energy consumption, Renewable and Sustainable Energy Reviews 16, no. 6 (2012) 3586-3592.
DOI: 10.1016/j.rser.2012.02.049
Google Scholar
[30]
R. Blonbou, S. Monjoly, J-F. Dorville, An adaptive short-term prediction scheme for wind energy storage management, Energy conversion and management 52, no. 6 (2011) 2412-2416.
DOI: 10.1016/j.enconman.2011.01.013
Google Scholar
[31]
B. Chen, M. Sinn, J. Ploennigs, A. Schumann, Statistical Anomaly Detection in Mean and Variation of Energy Consumption, In Pattern Recognition (ICPR), 2014 22nd International Conference on, pp.3570-3575. IEEE, (2014).
DOI: 10.1109/icpr.2014.614
Google Scholar
[32]
C.W. Frey, Process diagnosis and monitoring of field bus based automation systems using self-organizing maps and watershed transformations, In Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on, pp.620-625. IEEE, (2008).
DOI: 10.1109/mfi.2008.4648013
Google Scholar
[33]
S. Faltinski, H. Flatt, F. Pethig, B. Kroll, A. Vodenčarević, A. Maier, O. Niggemann, Detecting anomalous energy consumptions in distributed manufacturing systems, In Industrial Informatics (INDIN), 2012 10th IEEE International Conference on, pp.358-363. IEEE, (2012).
DOI: 10.1109/indin.2012.6301142
Google Scholar
[34]
S.S. Gilani, S. Windmann, F. Pethig, B. Kroll, O. Niggemann, The importance of model-learning for the analysis of the energy consumption of production plants, In Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on, pp.1-8. IEEE, (2013).
DOI: 10.1109/etfa.2013.6647976
Google Scholar
[35]
S. Salvador, P. Chan, Learning states and rules for detecting anomalies in time series, Applied Intelligence 23, no. 3 (2005) 241-255.
DOI: 10.1007/s10489-005-4610-3
Google Scholar
[36]
A. Maier, A. Vodencarevic, O. Niggemann, R. Just, M. Jaeger, Anomaly detection in production plants using timed automata, In 8th International Conference on Informatics in Control, Automation and Robotics (ICINCO). Noordwijkerhout, The Netherlands, pp.363-369. (2011).
DOI: 10.5220/0003538903630369
Google Scholar
[37]
F. Karl, P. Schnellbach, G. Reinhart, J. Böhner, S. Freiberger, R. Steinhilper, S. Kreitlein, J. Franke, T. Maier, J. Pohl, M. F. Zäh: Green Factory Bavaria Demonstrations-, Lehr- und Forschungsplattform zur Erhöhung der Energieeffizienz. In: wt Werkstattstechnik online Jahrgang 102 (2012).
DOI: 10.37544/1436-4980-2012-9-629
Google Scholar