Approaches for Monitoring the Energy Consumption with Machine Learning Methods

Article Preview

Abstract:

In times of rising energy costs and increasing customer awareness of sustainable production methods, many manufacturers take measures to reduce their energy consumption. However, after the realization of such activities the energy demand often tends to increase again due to e.g. leaks, clogged filters, defect valves or suboptimal parameter settings. In order to prevent this, it is necessary to quickly identify such increases by continuously monitoring the energy consumption and counteracting accordingly. Currently, the monitoring is either performed manually or by setting static threshold values. The manual control can be time consuming for large amounts of sensor data. By setting static threshold values only a fraction of the inefficiencies are disclosed. Another option is to use anomaly detection methods from the area of machine learning, which compare the actual sensor values with the expected ones. In this paper an overview about existing anomaly detection methods, which can be applied for this purpose, is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-85

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., BDEW-Strompreisanalyse Juni 2014, Berlin, (2014).

Google Scholar

[2] VDI Zentrum Ressourceneffizienz GmbH, Umsetzung von Ressourceneffizienz-Maßnahmen in KMU und ihre Treiber, Berlin, (2011).

Google Scholar

[3] Volkswagen Aktiengesellschaft, sustainability report 2014, Wolfsburg (2015).

Google Scholar

[4] BMW Group, Sustainable value report 2014, (2015).

Google Scholar

[5] Universität Stuttgart, Institut für Energieeffizienz in der Produktion (EEP), Auswertung 3. Energieeffizienz-Index Winter 2014/2015, Stuttgart (2015).

Google Scholar

[6] E. Mills, Building commissioning: a golden opportunity for reducing energy costs and greenhouse gas emissions in the United States, Energy Efficiency 4, no. 2 (2011) 145-173.

DOI: 10.1007/s12053-011-9116-8

Google Scholar

[7] G. Reinhart, F. Karl, P. Krebs, S. Reinhardt, Energiewertstrom – Eine Methode zur ganzheitlichen Erhöhung der Energieproduktivität, ZWF 105 (2010) (2010) 870–875.

DOI: 10.3139/104.110401

Google Scholar

[8] R. Gleich, Energiecontrolling, first ed., Haufe Verlag, Freiburg, (2014).

Google Scholar

[9] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM computing surveys (CSUR) 41, no. 3 (2009) 15.

DOI: 10.1145/1541880.1541882

Google Scholar

[10] D. Cheboli, Anomaly detection of time series, PhD diss., University of Minnesota, (2010).

Google Scholar

[11] Y. Zhang, W. Chen, J. Black, Anomaly detection in premise energy consumption data, In Power and Energy Society General Meeting, 2011 IEEE, pp.1-8. IEEE, (2011).

DOI: 10.1109/pes.2011.6039858

Google Scholar

[12] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection for discrete sequences: A survey, Knowledge and Data Engineering, IEEE Transactions on 24, no. 5 (2012) 823-839.

DOI: 10.1109/tkde.2010.235

Google Scholar

[13] M. Gupta, J. Gao, C. Aggarwal, J. Han, Outlier detection for temporal data, Synthesis Lectures on Data Mining and Knowledge Discovery 5, no. 1 (2014) 1-129.

DOI: 10.2200/s00573ed1v01y201403dmk008

Google Scholar

[14] J.E. Seem, Using intelligent data analysis to detect abnormal energy consumption in buildings, Energy and Buildings 39, no. 1 (2007): 52-58.

DOI: 10.1016/j.enbuild.2006.03.033

Google Scholar

[15] D. Fisch, T. Gruber, B. Sick, Swiftrule: Mining comprehensible classification rules for time series analysis, Knowledge and Data Engineering, IEEE Transactions on 23, no. 5 (2011) 774-787.

DOI: 10.1109/tkde.2010.161

Google Scholar

[16] D. De Silva, X. Yu, D. Alahakoon, G. Holmes, A data mining framework for electricity consumption analysis from meter data, Industrial Informatics, IEEE Transactions on 7, no. 3 (2011) 399-407.

DOI: 10.1109/tii.2011.2158844

Google Scholar

[17] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, E. Keogh, Querying and mining of time series data: experimental comparison of representations and distance measures, Proceedings of the VLDB Endowment 1, no. 2 (2008) 1542-1552.

DOI: 10.14778/1454159.1454226

Google Scholar

[18] T. Fu, A review on time series data mining, Engineering Applications of Artificial Intelligence 24, no. 1 (2011) 164-181.

DOI: 10.1016/j.engappai.2010.09.007

Google Scholar

[19] E. Keogh, S. Kasetty, On the need for time series data mining benchmarks: a survey and empirical demonstration, Data Mining and knowledge discovery 7, no. 4 (2003) 349-371.

DOI: 10.1145/775047.775062

Google Scholar

[20] U. Rebbapragada, P. Protopapas, C.E. Brodley, C. Alcock, Finding anomalous periodic time series, Machine learning 74, no. 3 (2009) 281-313.

DOI: 10.1007/s10994-008-5093-3

Google Scholar

[21] V. Chandola, V. Mithal, V. Kumar, Comparative evaluation of anomaly detection techniques for sequence data, In 2008 Eighth IEEE International Conference on Data Mining, pp.743-748. IEEE, (2008).

DOI: 10.1109/icdm.2008.151

Google Scholar

[22] E. Keogh, J. Lin, Clustering of time-series subsequences is meaningless: implications for previous and future research, Knowledge and information systems 8, no. 2 (2005) 154-177.

DOI: 10.1007/s10115-004-0172-7

Google Scholar

[23] G. Kant, K.S. Sangwan, Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining, Journal of Cleaner Production 83 (2014) 151-164.

DOI: 10.1016/j.jclepro.2014.07.073

Google Scholar

[24] W. Li, S. Kara, An empirical model for predicting energy consumption of manufacturing processes: a case of turning process, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 225, no. 9 (2011).

DOI: 10.1177/2041297511398541

Google Scholar

[25] B. Chen, M. Sinn, J. Ploennigs, A. Schumann, Statistical Anomaly Detection in Mean and Variation of Energy Consumption, In Pattern Recognition (ICPR), 2014 22nd International Conference on, pp.3570-3575. IEEE, (2014).

DOI: 10.1109/icpr.2014.614

Google Scholar

[26] S. -J. Shin, J. Woo, S. Rachuri, Predictive analytics model for power consumption in manufacturing, Procedia CIRP 15 (2014) 153-158.

DOI: 10.1016/j.procir.2014.06.036

Google Scholar

[27] C.V. Le, C.K. Pang, O.P. Gan, X.M. Chee, D.H. Zhang, M. Luo, H.L. Chan, F.L. Lewis, Classification of energy consumption patterns for energy audit and machine scheduling in industrial manufacturing systems, Transactions of the Institute of Measurement and Control 35, no. 5 (2013).

DOI: 10.1177/0142331212460883

Google Scholar

[28] G. Prasad, E. Swidenbank, B.W. Hogg, A novel performance monitoring strategy for economical thermal power plant operation, IEEE Transactions on Energy Conversion 14, no. 3 (1999) 802-809.

DOI: 10.1109/60.790955

Google Scholar

[29] H. Zhao, F. Magoulès, A review on the prediction of building energy consumption, Renewable and Sustainable Energy Reviews 16, no. 6 (2012) 3586-3592.

DOI: 10.1016/j.rser.2012.02.049

Google Scholar

[30] R. Blonbou, S. Monjoly, J-F. Dorville, An adaptive short-term prediction scheme for wind energy storage management, Energy conversion and management 52, no. 6 (2011) 2412-2416.

DOI: 10.1016/j.enconman.2011.01.013

Google Scholar

[31] B. Chen, M. Sinn, J. Ploennigs, A. Schumann, Statistical Anomaly Detection in Mean and Variation of Energy Consumption, In Pattern Recognition (ICPR), 2014 22nd International Conference on, pp.3570-3575. IEEE, (2014).

DOI: 10.1109/icpr.2014.614

Google Scholar

[32] C.W. Frey, Process diagnosis and monitoring of field bus based automation systems using self-organizing maps and watershed transformations, In Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on, pp.620-625. IEEE, (2008).

DOI: 10.1109/mfi.2008.4648013

Google Scholar

[33] S. Faltinski, H. Flatt, F. Pethig, B. Kroll, A. Vodenčarević, A. Maier, O. Niggemann, Detecting anomalous energy consumptions in distributed manufacturing systems, In Industrial Informatics (INDIN), 2012 10th IEEE International Conference on, pp.358-363. IEEE, (2012).

DOI: 10.1109/indin.2012.6301142

Google Scholar

[34] S.S. Gilani, S. Windmann, F. Pethig, B. Kroll, O. Niggemann, The importance of model-learning for the analysis of the energy consumption of production plants, In Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on, pp.1-8. IEEE, (2013).

DOI: 10.1109/etfa.2013.6647976

Google Scholar

[35] S. Salvador, P. Chan, Learning states and rules for detecting anomalies in time series, Applied Intelligence 23, no. 3 (2005) 241-255.

DOI: 10.1007/s10489-005-4610-3

Google Scholar

[36] A. Maier, A. Vodencarevic, O. Niggemann, R. Just, M. Jaeger, Anomaly detection in production plants using timed automata, In 8th International Conference on Informatics in Control, Automation and Robotics (ICINCO). Noordwijkerhout, The Netherlands, pp.363-369. (2011).

DOI: 10.5220/0003538903630369

Google Scholar

[37] F. Karl, P. Schnellbach, G. Reinhart, J. Böhner, S. Freiberger, R. Steinhilper, S. Kreitlein, J. Franke, T. Maier, J. Pohl, M. F. Zäh: Green Factory Bavaria Demonstrations-, Lehr- und Forschungsplattform zur Erhöhung der Energieeffizienz. In: wt Werkstattstechnik online Jahrgang 102 (2012).

DOI: 10.37544/1436-4980-2012-9-629

Google Scholar