E|Flow - From Production Line Concept to a Physically and Digitally Full-Meshed Production Network

Abstract:

Article Preview

The continuous change of the consumers’ behavior combined with the impact of new technologies to the shop-floor is a challenge for the classic and established line production. Due to the effects of mass-customization there is an increase of the variants of the products combined with a reduction of the number of units per variation. Therefore, it is necessary that the next generations of production lines, especially the assembling devices, have to be designed more adaptable. Regarding to business information systems this trend is realized by a progressive digital integration of the particular units. However, at the physical level of the value stream the sequenced units are linked to each other and arranged flow-orientated since Taylor. Particularly, for mass production the so called “line concept” is well established. This inflexibility of the physical material flow blocks the spread of mass-customization into established industrial sectors where linked manufacturing steps are common use. A product which is very individualized is not, or only with an additional expense, producible on such linked lines. Therefore, it is necessary to resolve the linking of the physical material flow similar to the digital integration of the work flow. The result will be a physically and digitally full-meshed network of production units with a high variability. Especially for a production of goods with a high variant diversity the benefits of a physically meshed production site are obvious. Each part gets its own and individual routing, which depends on the current machine availability, the set-up and other factors. Furthermore, a change of the general conditions during the manufacturing of the part can be considered and lead to an adaption of the routing. One of the most important parts of a flexible physical production network is the transport system, consisting of autonomous and smart entities which are interconnected with business information systems, products and machines.

Info:

Periodical:

Edited by:

Jörg Franke and Sven Kreitlein

Pages:

94-101

Citation:

M. Scholz et al., "E|Flow - From Production Line Concept to a Physically and Digitally Full-Meshed Production Network", Applied Mechanics and Materials, Vol. 805, pp. 94-101, 2015

Online since:

November 2015

Export:

Price:

$41.00

* - Corresponding Author

[1] Bundesministerium für Bildung und Forschung, Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4. 0: Abschlussbericht des Arbeitskreises Industrie 4. 0, (2013).

[2] M. Kleinemeier, Von der Automatisierungspyramide zu Unternehmenssteuerungsnetzwerken, in Industrie 4. 0 in Produktion, Automatisierung und Logistik: Anwendung, Technologien und Migration, T. Bauernhansl, M. ten Hompel, and B. Vogel-Heuser, Eds, Wiesbaden: Springer Vieweg, (2014).

DOI: https://doi.org/10.1007/978-3-658-04682-8_29

[3] I. Wolff and S. Schulze, Industrie 4. 0 - Cyber Physical Systems in der Produktion: Nordrhein-Westfalen auf dem Weg zum digitalen Industrieland, Cluster Informations- und Kommunikationstechnologie, Wuppertal, IKT. NRW Schriftenreihe, (2013).

DOI: https://doi.org/10.1007/978-3-658-11755-9_14

[4] H. Kagermann, Chancen von Industrie 4. 0 nutzen, in Industrie 4. 0 in Produktion, Automatisierung und Logistik: Anwendung, Technologien und Migration, T. Bauernhansl, M. ten Hompel, and B. Vogel-Heuser, Eds, Wiesbaden: Springer Vieweg, (2014).

DOI: https://doi.org/10.1007/978-3-658-04682-8

[5] T. Ohno, Das Toyota-Produktionssystem, 3rd ed. Frankfurt [u. a. ]: Campus, (2013).

[6] VDMA, Industrie 4. 0: Die vierte industrielle Revolution, Frankfurt am Main, (2014).

[7] E. Uhlmann, E. Hohwieler, and M. Kraft, Selbstorganisierende Produktion: Agenten intelligenter Objekte koordinieren und steuern den Produktionsablauf, Industrie Management, no. 1, http: /www. industrie-management. de /homepage/im/imhp. nsf/ 0/3739A1CFCD9CE243C1257B09004DD78C/$FILE/uhlmann_Selbstorganisierende_Produktion_IM_2013_1. pdf, (2013).

[8] D. Spath, Ed, Produktionsarbeit der Zukunft - Industrie 4. 0. Stuttgart: Fraunhofer-Verlag, (2013).

[9] S. Russwurm, Software: Die Zukunft der Industrie, in Xpert. press, Industrie 4. 0: Beherrschung der industriellen Komplexität mit SysLM, U. Sendler, Ed, Berlin: Springer-Vieweg, (2013).

DOI: https://doi.org/10.1007/978-3-642-36917-9_1

[10] T. Bauernhansl, Die Vierte Industrielle Revolution: Der Weg in ein wertschaffendes Produktionsparadigma, in Industrie 4. 0 in Produktion, Automatisierung und Logistik: Anwendung, Technologien und Migration, T. Bauernhansl, M. ten Hompel, and B. Vogel-Heuser, Eds, Wiesbaden: Springer Vieweg, (2014).

DOI: https://doi.org/10.1007/978-3-658-04682-8_1

[11] D. Steegmüller and M. Zürn, Wandlungsfähige Produktionssysteme für den Automobilbau der Zukunft, in Industrie 4. 0 in Produktion, Automatisierung und Logistik: Anwendung, Technologien und Migration, T. Bauernhansl, M. ten Hompel, and B. Vogel-Heuser, Eds, Wiesbaden: Springer Vieweg, (2014).

DOI: https://doi.org/10.1007/978-3-658-04682-8_5

[12] S. Bangsow, Praxishandbuch Plant Simulation und SimTalk: Anwendung und Programmierung in über 150 Beispiel-Modellen. München: Hanser, (2011).

DOI: https://doi.org/10.3139/9783446429031

[13] F. Karl, P. Schnellbach, G. Reinhart, J. Böhner, S. Freiberger, R. Steinhilper, S. Kreitlein, J. Franke, T. Maier, J. Pohl, and M. F. Zäh, Green Factory Bavaria Demonstrations-, Lehr- und Forschungsplattform zur Erhöhung der Energieeffizienz, in wt Werkstatttechnik online.

[14] S. Kreitlein, A. Höft, S. Schwender, and J. Franke, Green Factories Bavaria: A Network of Distributed Learning Factories for Energy Efficient Production, in 5th Conference on Learning Factories, p.58–63.

DOI: https://doi.org/10.1016/j.procir.2015.02.219