Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems

Article Preview

Abstract:

The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an exemplary application of a diagnostic scenario for industrial robots. For this objective, data fusion of energy data and operating logs is necessary to obtain detailed knowledge of the behavior of a production system. Hereby, an online measurement system will be described, which helps to uncover inefficiencies in production systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] International Organization for Standardization (ISO), DIN EN ISO 50001: Energy management systems – Requirements with guidance for use, Beuth Verlag, Berlin, (2002).

DOI: 10.3403/30279771

Google Scholar

[2] M. Schenk, Instandhaltung technischer Systeme (Maintenance of technical systems), first ed., Springer Verlag, Heidelberg, (2010).

Google Scholar

[3] T. Pavel, P. Kodet, V. Havlena, OPC-UA information model for large-scale process control applications, 38th Annual Conference on IEEE Industrial Electronics Society (IECON) (2012) 5793–5798.

DOI: 10.1109/iecon.2012.6389038

Google Scholar

[4] D. Hastbacka, L. Barna, M. Karaila, Y. Liang, P. Tuominen, S. Kuikka, Device status information service architecture for condition monitoring using OPC UA, Emerging Technology and Factory Automation (ETFA) (2014) 1–7.

DOI: 10.1109/etfa.2014.7005141

Google Scholar

[5] T. Bauernhansl, M. ten Hompel, B. Vogel-Heuser, Industrie 4. 0 in Produktion, Automatisierung und Logistik (Industry 4. 0 in production, automation and logistics), first ed., Springer-Verlag, Heidelberg, (2014).

DOI: 10.1007/978-3-662-45537-1

Google Scholar

[6] M. Michl, Webbasierte Ansätze zur ganzheitlichen technischen Diagnose (Web-based approaches to holistic technical diagnosis), first ed., Meisenbach-Verlag, Bamberg, (2013).

Google Scholar

[7] H. Fleischmann, J. Kohl, M. Schneider, J. Franke, Intelligente Fehlerdiagnose in Industrie 4. 0 (Intelligent fault diagnosis in Industry 4. 0), wt Werkstattstechnik online 105 (2015) 90–95.

DOI: 10.37544/1436-4980-2015-03-14

Google Scholar

[8] M. Brossog, C. Hartmann, J. Kohl, J. Merhof, M. Reichenbach, D. Fey, J. Franke, Prozessflexible Steuerung von Industrierobotern (Flexible process control of industrial robots), wt Werkstattstechnik online 104 (2014) 535–540.

DOI: 10.37544/1436-4980-2014-9-535

Google Scholar

[9] W. Mahnke, S. -H. Leitner, M. Damm, OPC Unified Architecture, third ed. Springer-Verlag, Heidelberg, (2009).

Google Scholar

[10] S. Spreng, J. Kohl, J. Franke, Development of an adjustable measuring system for electrical consumptions in production, Applied Mechanics and Materials 655 (2014) 41–45.

DOI: 10.4028/www.scientific.net/amm.655.41

Google Scholar