A Review of Uncertainty Sources on Weather Ground-Based Radar for Rainfall Estimation

Article Preview

Abstract:

Efforts in hydrometeorology are concentrated on finding the causes of the ground based radar uncertainty sources for rainfall estimation recently. The error sources are interactions between radar with atmosphere and topography. Radar singly often covers systematic error whereas atmospheric and topographic errors are relevant to location and precipitation pattern. This article reviews uncertainty sources on weather ground-based radar in order to rainfall estimation that have been discussed in nine main categories includes; the range effects, radar signal attenuation, beam blockage, vertical air motion and precipitation drift, ground clutter, anomalous propagation, vertical variability of the precipitation system, variability of the Z-R relationship and bright band. Topographic errors such as ground clutter and beam blockage primarily can be eliminated by attentive in site selection. Atmospheric errors such as vertical air motion and precipitation drift can filter or eliminated by calibration methods. Systematic errors include radar signal attenuation and anomalous propagation is the result of structural changes in the radar waves in space. Thus, this review is explored the characteristics of uncertainty error resources and a comprehensive appraisal of experimental procedures is provided.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-271

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. J. Matyas, Use of Ground-based Radar for Climate-Scale Studies of Weather and Rainfall, Geogr. Compass, vol. 4, no. 9, p.1218–1237, Sep. (2010).

DOI: 10.1111/j.1749-8198.2010.00370.x

Google Scholar

[2] S. Michaelides, V. Levizzani, E. Anagnostou, P. Bauer, T. Kasparis, and J. E. Lane, Precipitation: Measurement, remote sensing, climatology and modeling, Atmos. Res., vol. 94, no. 4, p.512–533, Dec. (2009).

DOI: 10.1016/j.atmosres.2009.08.017

Google Scholar

[3] P. P. Mapiam, N. Sriwongsitanon, S. Chumchean, and A. Sharma, Effects of Rain Gauge Temporal Resolution on the Specification of a Z – R Relationship, J. Atmos. Ocean. Technol., vol. 26, no. 7, p.1302–1314, Jul. (2009).

DOI: 10.1175/2009jtecha1161.1

Google Scholar

[4] J. Marshal and W. Palmer, the distribution of raindrops with size, J. Meteorol., vol. 1, p.165–166, (1948).

Google Scholar

[5] P. V. Mandapaka, W. F. Krajewski, G. J. Ciach, G. Villarini, and J. a. Smith, Estimation of radar-rainfall error spatial correlation, Adv. Water Resour., vol. 32, no. 7, p.1020–1030, Jul. (2009).

DOI: 10.1016/j.advwatres.2008.08.014

Google Scholar

[6] O. Prat and A. Barros, Exploring the Transient Behavior of Z–R Relationships: Implications for Radar Rainfall Estimation, p.2127–2143, (2009).

DOI: 10.1175/2009jamc2165.1

Google Scholar

[7] S. Yokoi, Y. Nakayama, Y. Agata, and T. Satomura, The relationship between observation intervals and errors in radar rainfall estimation over the Indochina Peninsula, Hydrol. Process., vol. 26, no. October 2012, p.834–842, (2012).

DOI: 10.1002/hyp.8297

Google Scholar

[8] X. Zhang and R. Srinivasan, GIS-based spatial precipitation estimation using next generation radar and raingauge data, Environ. Model. Softw., vol. 25, no. 12, p.1781–1788, Dec. (2010).

DOI: 10.1016/j.envsoft.2010.05.012

Google Scholar

[9] G. Zhao, R. Chu, T. Zhang, and W. Jia, Rainwater content estimated using polarimetric radar parameters in the Heihe River Basin, Atmos. Res., vol. 120–121, p.155–161, Feb. (2013).

DOI: 10.1016/j.atmosres.2012.08.011

Google Scholar

[10] K. Ozturk and A. U. Yılmazer, Improving the accuracy of the radar rainfall estimates using gage adjustment techniques: Case study for west Anatolia, Turkey, Atmos. Res., vol. 86, no. 2, p.139–148, Nov. (2007).

DOI: 10.1016/j.atmosres.2007.03.009

Google Scholar

[11] F. J. Tapiador, F. J. Turk, W. Petersen, A. Y. Hou, E. García-Ortega, L. a. T. Machado, C. F. Angelis, P. Salio, C. Kidd, G. J. Huffman, and M. de Castro, Global precipitation measurement: Methods, datasets and applications, Atmos. Res., vol. 104–105, p.70–97, Feb. (2012).

DOI: 10.1016/j.atmosres.2011.10.021

Google Scholar

[12] D. J. Hill, Automated Bayesian quality control of streaming rain gauge data, Environ. Model. Softw., vol. 40, p.289–301, Feb. (2013).

DOI: 10.1016/j.envsoft.2012.10.006

Google Scholar

[13] A. Battaglia, S. Tanelli, S. Kobayashi, D. Zrnic, R. J. Hogan, and C. Simmer, Multiple-scattering in radar systems: A review, J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 6, p.917–947, Apr. (2010).

DOI: 10.1016/j.jqsrt.2009.11.024

Google Scholar

[14] seed A. Chumchean, S. , sharma A., Radar rainfall error variance and its impact on radar rainfall calibration, Phys. Chem. Earth, vol. 28, p.27–39, (2003).

DOI: 10.1016/s1474-7065(03)00005-6

Google Scholar

[15] P. Tabary, A. -A. Boumahmoud, H. Andrieu, R. J. Thompson, A. J. Illingworth, E. Le Bouar, and J. Testud, Evaluation of two 'integrated' polarimetric Quantitative Precipitation Estimation (QPE) algorithms at C-band, J. Hydrol., vol. 405, no. 3–4, p.248–260, Aug. (2011).

DOI: 10.1016/j.jhydrol.2011.05.021

Google Scholar

[16] B. -C. Seo and W. F. Krajewski, Investigation of the scale-dependent variability of radar-rainfall and rain gauge error covariance, Adv. Water Resour., vol. 34, no. 1, p.152–163, Jan. (2011).

DOI: 10.1016/j.advwatres.2010.10.006

Google Scholar

[17] A. Rossa, K. Liechti, M. Zappa, M. Bruen, U. Germann, G. Haase, C. Keil, and P. Krahe, The COST 731 Action : A review on uncertainty propagation in advanced hydro-meteorological forecast systems, Atmos. Res., vol. 100, no. 2–3, p.150–167, (2011).

DOI: 10.1016/j.atmosres.2010.11.016

Google Scholar

[18] T. Islam, M. a. Rico-Ramirez, D. Han, and P. K. Srivastava, Artificial intelligence techniques for clutter identification with polarimetric radar signatures, Atmos. Res., vol. 109–110, p.95–113, Jun. (2012).

DOI: 10.1016/j.atmosres.2012.02.007

Google Scholar

[19] B. E. Vieux and J. M. Imgarten, On the scale-dependent propagation of hydrologic uncertainty using high-resolution X-band radar rainfall estimates, in Atmospheric Research, Jan-2012, vol. 103, p.96–105.

DOI: 10.1016/j.atmosres.2011.06.009

Google Scholar

[20] M. Ambiental, U. P. De Catalunya, and J. Girona, Identification of Stratiform and Convective Areas Using Radar Application to the Improvement of DSD Analysis and Z-R Relations Data with, Phys. Chem. Earrh (B), vol. 25, no. 10, p.985–990, (2000).

Google Scholar

[21] S. Chumchean, A. Seed, and A. Sharma, Correcting of real-time radar rainfall bias using a Kalman filtering approach, J. Hydrol., vol. 317, no. 1–2, p.123–137, Feb. (2006).

DOI: 10.1016/j.jhydrol.2005.05.013

Google Scholar

[22] K. Hood, S. Torres, and R. Palmer, Automatic Detection of Wind Turbine Clutter for Weather Radars, J. Atmos. Ocean. Technol., vol. 27, no. 11, p.1868–1880, Nov. (2010).

DOI: 10.1175/2010jtecha1437.1

Google Scholar

[23] F. Russo, G. Scialanga, L. Baldini, and E. Gorgucci, Advances in Geosciences Rainfall estimation and ground clutter rejection with dual polarization weather radar, p.127–130, (2006).

DOI: 10.5194/adgeo-7-127-2006

Google Scholar

[24] A. Rahimi, A. Holt, G. Upton, and H. verworn, Attenuation Calibration of an X-Band Weather Radar Using a Microwave Link, Am. Meteorol. Soc., no. 2003, p.395–405, (2006).

DOI: 10.1175/jtech1855.1

Google Scholar

[25] T. Bannister, R. Deslandes, and H. Richter, The end-to-end severe thunderstorm forecasting system in Australia : overview and training issues and, vol. 57, p.329–343, (2008).

Google Scholar

[26] M. Jang, D. -I. Lee, C. -H. You, D. -S. Kim, M. Maki, J. -H. Jeong, and H. Uyeda, Quantitative precipitation estimates from radar reflectivity corrected by the SMA method, Atmos. Res., vol. 104–105, p.111–118, Feb. (2012).

DOI: 10.1016/j.atmosres.2011.08.004

Google Scholar

[27] Bringi V. N. and Chandrasekar, Polarimetric Doppler wearther radar, 1st ed. UK: cambridge university press, 2001, p.1– 664.

Google Scholar

[28] G. Villarini and W. F. Krajewski, Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall, Surv. Geophys., vol. 31, no. 1, p.107–129, Aug. (2009).

DOI: 10.1007/s10712-009-9079-x

Google Scholar

[29] A. D. Ochou, A. Nzeukou, and H. Sauvageot, Parametrization of drop size distribution with rain rate, Atmos. Res., vol. 84, no. 1, p.58–66, Mar. (2007).

DOI: 10.1016/j.atmosres.2006.05.003

Google Scholar

[30] J. wan Baelen, F. Tridon, and Y. Pointin, Simultaneous X-band and K-band study of precipitation to derive specific Z–R relationships, Atmos. Res., vol. 94, no. 4, p.596–605, Dec. (2009).

DOI: 10.1016/j.atmosres.2009.04.003

Google Scholar

[31] a. N. a. Schellart, W. J. Shepherd, and a. J. Saul, Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale, Adv. Water Resour., vol. 45, p.65–75, Sep. (2012).

DOI: 10.1016/j.advwatres.2011.10.012

Google Scholar

[32] K. Ośródka, J. Szturc, and A. Jurczyk, Chain of data quality algorithms for 3-D single-polarization radar reflectivity (RADVOL-QC system), Meteorol. Appl., p. n/a–n/a, Jun. (2012).

DOI: 10.1002/met.1323

Google Scholar

[33] S. Sebastianelli, F. Russo, F. Napolitano, and L. Baldini, On precipitation measurements collected by a weather radar and a rain gauge network, Nat. Hazards Earth Syst. Sci., vol. 13, no. 3, p.605–623, Mar. (2013).

DOI: 10.5194/nhess-13-605-2013

Google Scholar

[34] S. -T. Chen, P. -S. Yu, and B. -W. Liu, Comparison of neural network architectures and inputs for radar rainfall adjustment for typhoon events, J. Hydrol., vol. 405, no. 1–2, p.150–160, Jul. (2011).

DOI: 10.1016/j.jhydrol.2011.05.017

Google Scholar

[35] H. McMillan, B. Jackson, M. Clark, D. Kavetski, and R. Woods, Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models, J. Hydrol., vol. 400, no. 1–2, p.83–94, Mar. (2011).

DOI: 10.1016/j.jhydrol.2011.01.026

Google Scholar

[36] F. Quintero, D. Sempere-Torres, M. Berenguer, and E. Baltas, A scenario-incorporating analysis of the propagation of uncertainty to flash flood simulations, J. Hydrol., vol. 460–461, p.90–102, Aug. (2012).

DOI: 10.1016/j.jhydrol.2012.06.045

Google Scholar

[37] a. Berne and W. F. Krajewski, Radar for hydrology: Unfulfilled promise or unrecognized potential?, Adv. Water Resour., vol. 51, p.357–366, Jan. (2013).

DOI: 10.1016/j.advwatres.2012.05.005

Google Scholar

[38] A. M. Rossa, F. Laudanna Del Guerra, M. Borga, F. Zanon, T. Settin, and D. Leuenberger, Radar-driven high-resolution hydro-meteorological forecasts of the 26 September 2007 Venice flash flood, J. Hydrol., vol. 394, no. 1–2, p.230–244, Nov. (2010).

DOI: 10.1016/j.jhydrol.2010.08.035

Google Scholar

[39] D. -S. Kim, M. Maki, and D. -I. Lee, Correction of X-band radar reflectivity and differential reflectivity for rain attenuation using differential phase, Atmos. Res., vol. 90, no. 1, p.1–9, Oct. (2008).

DOI: 10.1016/j.atmosres.2008.03.001

Google Scholar

[40] J. Guy delrieu, Lorenz, Attenuation in Rain for X- and C-Band Weather Radar Systems: Sensitivity with respect to the Drop Size Distribution, p.57–68, (1999).

DOI: 10.1175/1520-0450(1999)038<0057:airfxa>2.0.co;2

Google Scholar

[41] M. N. Anagnostou, J. Kalogiros, E. N. Anagnostou, M. Tarolli, A. Papadopoulos, and M. Borga, Performance evaluation of high-resolution rainfall estimation by X-band dual-polarization radar for flash flood applications in mountainous basins, J. Hydrol., vol. 394, no. 1–2, p.4–16, Nov. (2010).

DOI: 10.1016/j.jhydrol.2010.06.026

Google Scholar

[42] G. Pegram, X. Llort, and D. Sempere-Torres, Radar rainfall: Separating signal and noise fields to generate meaningful ensembles, Atmos. Res., vol. 100, no. 2–3, p.226–236, May (2011).

DOI: 10.1016/j.atmosres.2010.11.018

Google Scholar

[43] J. X. Yeo, Y. -H. Lee, L. S. Kumar, and J. T. Ong, Comparison of S-Band Radar Attenuation Prediction With Beacon Measurements, IEEE Trans. Antennas Propag., vol. 60, no. 10, p.4892–4900, Oct. (2012).

DOI: 10.1109/tap.2012.2207346

Google Scholar

[44] P. Hazenberg, H. Leijnse, and R. Uijlenhoet, Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes, Water Resour. Res., vol. 47, no. 2, p. n/a–n/a, Feb. (2011).

DOI: 10.1029/2010wr009068

Google Scholar

[45] W. L. Peirson, J. F. Beyá, M. L. Banner, J. S. Peral, and S. A. Azarmsa, Rain-induced attenuation of deep-water waves, J. Fluid Mech., vol. 724, no. 87, p.5–35, Apr. (2013).

DOI: 10.1017/jfm.2013.87

Google Scholar

[46] Q. Cao and G. Zhang, Errors in Estimating Raindrop Size Distribution Parameters Employing Disdrometer and Simulated Raindrop Spectra, J. Appl. Meteorol. Climatol., vol. 48, no. 2, p.406–425, Feb. (2009).

DOI: 10.1175/2008jamc2026.1

Google Scholar

[47] H. Leijnse, R. Uijlenhoet, and J. N. M. Stricker, Microwave link rainfall estimation: Effects of link length and frequency, temporal sampling, power resolution, and wet antenna attenuation, Adv. Water Resour., vol. 31, no. 11, p.1481–1493, Nov. (2008).

DOI: 10.1016/j.advwatres.2008.03.004

Google Scholar

[48] H. Okamoto, Active remote sensing of cloud microphysics, Radiat. Process. Atmos. Ocean, vol. 19, no. 1, p.19–22, (2013).

Google Scholar

[49] H. Okamoto, K. Sato, Y. Hagihara, and T. Nishizawa, Development of level 2 algorithms for EarthCARE CPR/ATLID, Radiat. Process. Atmos. Ocean, vol. 448, no. 1, p.448–451, (2013).

DOI: 10.1063/1.4804803

Google Scholar

[50] S. A. Lack and N. I. Fox, An examination of the effect of wind-drift on radar-derived surface rainfall estimations, vol. 85, p.217–229, (2007).

DOI: 10.1016/j.atmosres.2006.09.010

Google Scholar

[51] J. R. Taylor, W. J. Randel, and E. J. Jensen, Cirrus cloud-temperature interactions in the tropical tropopause layer: a case study, Atmos. Chem. Phys., vol. 11, no. 19, p.10085–10095, Oct. (2011).

DOI: 10.5194/acp-11-10085-2011

Google Scholar

[52] P. Ahammad, C. Williams, T. Kasparis, and C. Florida, Vertical Air Motion Estimates from the Disdrometer Flux Conservation Model and Related Experimental Observations, Proc. SPIE - Int. Soc. Opt. Eng., vol. 4729, no. May 2012, p.384–393, (2002).

DOI: 10.1117/12.477624

Google Scholar

[53] a. Verworn and U. Haberlandt, Spatial interpolation of hourly rainfall – effect of additional information, variogram inference and storm properties, Hydrol. Earth Syst. Sci., vol. 15, no. 2, p.569–584, Feb. (2011).

DOI: 10.5194/hess-15-569-2011

Google Scholar

[54] R. Schiemann, R. Erdin, M. Willi, C. Frei, M. Berenguer, and D. Sempere-Torres, Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland, Hydrol. Earth Syst. Sci., vol. 15, no. 5, p.1515–1536, May (2011).

DOI: 10.5194/hess-15-1515-2011

Google Scholar

[55] M. Wang, W. Wei, Z. Ruan, Q. He, and R. Ge, Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert., Environ. Monit. Assess., vol. 185, no. 6, p.4819–34, Jun. (2013).

DOI: 10.1007/s10661-012-2906-4

Google Scholar

[56] F. S. Marzano, M. Lamantea, M. Montopoli, M. Herzog, H. Graf, and D. Cimini, Microwave remote sensing of the 2011 Plinian eruption of the Grímsvötn Icelandic volcano, Remote Sens. Environ., vol. 129, p.168–184, Feb. (2013).

DOI: 10.1016/j.rse.2012.11.005

Google Scholar

[57] a. J. Litta, U. C. Mohanty, S. Kiran Prasad, M. Mohapatra, A. Tyagi, and S. C. Sahu, Simulation of tornado over Orissa (India) on March 31, 2009, using WRF–NMM model, Nat. Hazards, vol. 61, no. 3, p.1219–1242, Oct. (2011).

DOI: 10.1007/s11069-011-9979-1

Google Scholar

[58] Y. Liu, THE STUDY AND REAL-TIME IMPLEMENTATION OF ATTENUATION, p.1–217, (2008).

Google Scholar

[59] S. Bertoldo, L. Bracco, R. Notarpietro, C. Lucianaz, O. Rorato, M. Allegretti, and G. Perona, A standalone application to monitor the stability of a low cost maintenance free X-band mini weather radar, using ground clutter echoes, 2012 Int. Conf. Electromagn. Adv. Appl., p.1040–1043, Sep. (2012).

DOI: 10.1109/iceaa.2012.6328781

Google Scholar

[60] J. E. Nielsen, N. E. Jensen, and M. R. Rasmussen, Calibrating LAWR weather radar using laser disdrometers, Atmos. Res., Nov. (2012).

DOI: 10.1016/j.atmosres.2012.10.017

Google Scholar

[61] T. Naghibi, M. Namvar, and F. Behnia, Optimal and robust waveform design for MIMO radars in the presence of clutter, Signal Processing, vol. 90, no. 4, p.1103–1117, Apr. (2010).

DOI: 10.1016/j.sigpro.2009.07.033

Google Scholar

[62] L. Foresti and A. Pozdnoukhov, Exploration of alpine orographic precipitation patterns with radar image processing and clustering techniques, Meteorol. Appl., vol. 19, no. 4, p.407–419, Dec. (2012).

DOI: 10.1002/met.272

Google Scholar

[63] J. Guan, N. Liu, J. Zhang, and J. Song, Multifractal correlation characteristic for radar detecting low-observable target in sea clutter, Signal Processing, vol. 90, no. 2, p.523–535, Feb. (2010).

DOI: 10.1016/j.sigpro.2009.07.021

Google Scholar

[64] Z. Zhi-gang, Z. Jian-xue, and Z. Yong-gang, Research on the Influence of Ocean Environment on Sea Clutter, Procedia Environ. Sci., vol. 11, p.1108–1112, Jan. (2011).

DOI: 10.1016/j.proenv.2011.12.167

Google Scholar

[65] L. Zuo, C. Yao, and L. Men, Two Optimization Algorithms for Inversing Atmosphere Refractivity Profile from Radar Sea Clutter, Procedia Eng., vol. 15, p.2180–2185, Jan. (2011).

DOI: 10.1016/j.proeng.2011.08.408

Google Scholar

[66] L. Nie, W. Jiang, and Q. Fu, Marine Target Detection from Nonstationary Sea-Clutter Based On Topological Data Analysis, Procedia Eng., vol. 29, p.3429–3433, Jan. (2012).

DOI: 10.1016/j.proeng.2012.01.507

Google Scholar

[67] P. Crochet, Enhancing radar estimates of precipitation over complex terrain using information derived from an orographic precipitation model, J. Hydrol., vol. 377, no. 3–4, p.417–433, Oct. (2009).

DOI: 10.1016/j.jhydrol.2009.08.038

Google Scholar

[68] Z. Yaping and C. Minghu, Dynamical Weather Radar Beam Blockage Correction, in 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 2011, p.67–70.

DOI: 10.1109/cdciem.2011.183

Google Scholar

[69] L. Bouilloud, G. Delrieu, B. Boudevillain, and P. -E. Kirstetter, Radar rainfall estimation in the context of post-event analysis of flash-flood events, J. Hydrol., vol. 394, no. 1–2, p.17–27, Nov. (2010).

DOI: 10.1016/j.jhydrol.2010.02.035

Google Scholar

[70] H. Andrieu, J. . Creutin, G. Delrieu, and D. Faure, Use of a weather radar for the hydrology of a mountainous area. Part I: radar measurement interpretation, J. Hydrol., vol. 193, no. 1–4, p.1–25, Jun. (1997).

DOI: 10.1016/s0022-1694(96)03202-7

Google Scholar

[71] M. N. Anagnostou, J. Kalogiros, E. N. Anagnostou, and A. Papadopoulos, Experimental results on rainfall estimation in complex terrain with a mobile X-band polarimetric weather radar, Atmos. Res., vol. 94, no. 4, p.579–595, Dec. (2009).

DOI: 10.1016/j.atmosres.2009.07.009

Google Scholar

[72] D. -K. Kim, Y. -H. Kim, and D. -E. Chang, A study of microphysical properties within a precipitation system using wind profiler spectra, Asia-Pacific J. Atmos. Sci., vol. 47, no. 5, p.413–420, Dec. (2011).

DOI: 10.1007/s13143-011-0026-7

Google Scholar

[73] a. Lenouo, Climatology of anomalous propagation radar over Douala, Cameroon, Meteorol. Appl., p. n/a–n/a, Apr. (2012).

DOI: 10.1002/met.1321

Google Scholar

[74] S. Chumchean, A. Seed, and A. Sharma, An operational approach for classifying storms in real-time radar rainfall estimation, J. Hydrol., vol. 363, no. 1–4, p.1–17, Dec. (2008).

DOI: 10.1016/j.jhydrol.2008.09.005

Google Scholar

[75] Scott E. giangrande and Alexander V. Ryzhkov, Calibration of Dual-Polarization Radar in the Presence of Partial Beam Blockage, J. Atmos. Ocean. Technol., vol. 22, p.1156–1166, (2005).

DOI: 10.1175/jtech1766.1

Google Scholar

[76] C. Z. van de Beek, H. Leijnse, J. N. M. Stricker, R. Uijlenhoet, and H. W. J. Russchenberg, Performance of high-resolution X-band radar for rainfall measurement in The Netherlands, Hydrol. Earth Syst. Sci., vol. 14, no. 2, p.205–221, Feb. (2010).

DOI: 10.5194/hess-14-205-2010

Google Scholar

[77] W. F. Krajewski, B. Vignal, B. -C. Seo, and G. Villarini, Statistical model of the range-dependent error in radar-rainfall estimates due to the vertical profile of reflectivity, J. Hydrol., vol. 402, no. 3–4, p.306–316, May (2011).

DOI: 10.1016/j.jhydrol.2011.03.024

Google Scholar

[78] P. Mapiam and N. Sriwongsitanon, Climatological Z-R relationship for radar rainfall estimation in the upper Ping river basin, ScienceAsia, vol. 34, no. 1513, p.215–222, (2008).

DOI: 10.2306/scienceasia1513-1874.2008.34.215

Google Scholar

[79] S. Efrat mrin, Robert, David c. , Goodrich, Sooroosh, Radar Z – R Relationship for Summer Monsoon Storms in Arizona, Weather Forecast., vol. 20, p.672–679, (2005).

DOI: 10.1175/waf878.1

Google Scholar

[80] A. Henschke, Adjustment of the Z-R Relationship in Real-time for Use in South Florida, in World inviromental and water resources congress 2009Asce, 2009, no. 2000, p.6069–6080.

DOI: 10.1061/41036(342)615

Google Scholar

[81] M. Gabella, M. Bolliger, U. Germann, and G. Perona, Large sample evaluation of cumulative rainfall amounts in the Alps using a network of three radars, Atmos. Res., vol. 77, no. 1–4, p.256–268, Sep. (2005).

DOI: 10.1016/j.atmosres.2004.10.014

Google Scholar

[82] X. T. Yu, Z. W. Yu, X. P. Rui, F. Li, Y. T. Xi, and H. Q. Chen, Discussion about the Determination Methods of Weighted Centroid of dBZ on Vector Radar Echoes, Procedia Eng., vol. 29, p.2240–2246, Jan. (2012).

DOI: 10.1016/j.proeng.2012.01.295

Google Scholar

[83] R. P. D. M. Frasson, L. K. da Cunha, and W. F. Krajewski, Assessment of the Thies optical disdrometer performance, Atmos. Res., vol. 101, no. 1–2, p.237–255, Jul. (2011).

DOI: 10.1016/j.atmosres.2011.02.014

Google Scholar

[84] J. Jaffrain, A. Studzinski, and A. Berne, A network of disdrometers to quantify the small-scale variability of the raindrop size distribution, Water Resour. Res., vol. 47, no. August 2010, p.1–8, Apr. (2011).

DOI: 10.1029/2010wr009872

Google Scholar

[85] Q. Cao, G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, Analysis of Video Disdrometer and Polarimetric Radar Data to Characterize Rain Microphysics in Oklahoma, J. Appl. Meteorol. Climatol., vol. 47, no. 8, p.2238–2255, Aug. (2008).

DOI: 10.1175/2008jamc1732.1

Google Scholar

[86] F. S. Marzano, D. Cimini, and M. Montopoli, Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data, Atmos. Res., vol. 97, no. 4, p.583–600, Sep. (2010).

DOI: 10.1016/j.atmosres.2010.03.019

Google Scholar

[87] M. Gabella, E. Morin, R. Notarpietro, and S. Michaelides, Winter precipitation fields in the Southeastern Mediterranean area as seen by the Ku-band spaceborne weather radar and two C-band ground-based radars, Atmos. Res., vol. 119, p.120–130, Jan. (2013).

DOI: 10.1016/j.atmosres.2011.06.001

Google Scholar

[88] R. Uijlenhoet, Raindrop size distributions and radar reflectivity – rain rate relationships for radar hydrology *, Hydrol. Earth Syst. Sci., vol. 5, no. 4, p.615–627, (2001).

DOI: 10.5194/hess-5-615-2001

Google Scholar

[89] L. Xumin and Y. Xue, Research on Vectorization of Weather Radar Image, Procedia Eng., vol. 15, no. 1, p.1298–1302, Jan. (2011).

DOI: 10.1016/j.proeng.2011.08.240

Google Scholar

[90] B. County, A Field Study of Reflectivity and Z – R Relations Using Vertically Pointing Radars and Disdrometers, J. Atmos. Ocean. Technol., vol. 26, no. 1, p.1120–1134, (2009).

DOI: 10.1175/2008jtecha1163.1

Google Scholar

[91] O. P. Prat and A. P. Barros, Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation – Experiments in the inner region of the Great Smoky Mountains, J. Hydrol., vol. 391, no. 1–2, p.141–156, Sep. (2010).

DOI: 10.1016/j.jhydrol.2010.07.013

Google Scholar

[92] A. seed Chumchean, Siriluk , Ashish sharma, Radar rainfall error variance and its impact on radar rainfall calibration, vol. 28, p.27–39, (2003).

DOI: 10.1016/s1474-7065(03)00005-6

Google Scholar

[93] H. Andrieu, M. N. French, W. F. Krajewski, and K. P. Georgakakos, Stochastic–dynamical rainfall simulation based on weather radar volume scan data, Adv. Water Resour., vol. 26, no. 5, p.581–593, May (2003).

DOI: 10.1016/s0309-1708(02)00168-9

Google Scholar

[94] J. Figureueras, A. Boumahmoud, P. Dupuy, and P. Tabary, Long-term monitoring of French polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at C-band, Q. J. R. Meteorol. Soc., vol. 138, no. October, p.2212–2228, (2012).

DOI: 10.1002/qj.1934

Google Scholar

[95] T. . Trafalis, M. . Richman, a White, and B. Santosa, Data mining techniques for improved WSR-88D rainfall estimation, Comput. Ind. Eng., vol. 43, no. 4, p.775–786, Sep. (2002).

DOI: 10.1016/s0360-8352(02)00139-0

Google Scholar

[96] J. Joss and U. Germann, Solutions and problems when applying qualitative and quantitative information from weather radar, Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos., vol. 25, no. 10–12, p.837–841, Jan. (2000).

DOI: 10.1016/s1464-1909(00)00112-x

Google Scholar

[97] S. Vogl, P. Laux, W. Qiu, G. Mao, and H. Kunstmann, Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields, Hydrol. Earth Syst. Sci., vol. 16, no. 7, p.2311–2328, Jul. (2012).

DOI: 10.5194/hess-16-2311-2012

Google Scholar

[98] suzana R and Wardah T, Radar Hydrology : New Z / R Relationships for Klang River Basin , Malaysia, in International Conference on Environment Science and Engineering IPCBEE vol. 8 (2011) © (2011) IACSIT Press, Singapore, 2011, vol. 8, p.248–251.

DOI: 10.7763/ijesd.2011.v2.128

Google Scholar

[99] P. Ahammad, C. Williams, T. Kasparis, and C. Florida, Vertical Air Motion Estimates from the Disdrometer Flux Conservation Model and Related Experimental Observations, vol. 4729, no. May 2012. 2002, p.384–393.

DOI: 10.1117/12.477624

Google Scholar

[100] M. Gabella, P. Torino, and C. Duca, Radar Rainfall Estimates Adjustment Techniques in an Alpine Environment Using Different, vol. 25, no. 10, p.927–931, (2000).

DOI: 10.1016/s1464-1909(00)00127-1

Google Scholar

[101] U. Carlton and M. Niel, Experimental Test of the Effects of Z–R Law Variations on Comparison of WSR-88D Rainfall Amounts with Surface Rain Gauge and Disdrometer Data, Am. Meteorol. Soc., vol. 1, p.369–374, (2001).

DOI: 10.1175/1520-0434(2001)016<0369:etoteo>2.0.co;2

Google Scholar

[102] W. F. Krajewski, A. a. Ntelekos, and R. Goska, A GIS-based methodology for the assessment of weather radar beam blockage in mountainous regions: two examples from the US NEXRAD network, Comput. Geosci., vol. 32, no. 3, p.283–302, Apr. (2006).

DOI: 10.1016/j.cageo.2005.06.024

Google Scholar

[103] W. F. Krajewski and J. a. Smith, Radar hydrology: rainfall estimation, Adv. Water Resour., vol. 25, no. 8–12, p.1387–1394, Aug. (2002).

DOI: 10.1016/s0309-1708(02)00062-3

Google Scholar

[104] M. Grecu and W. F. Krajewski, A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting, J. Hydrol., vol. 239, no. 1–4, p.69–84, Dec. (2000).

DOI: 10.1016/s0022-1694(00)00360-7

Google Scholar

[105] J. K. Yeung, J. a. Smith, G. Villarini, A. a. Ntelekos, M. L. Baeck, and W. F. Krajewski, Analyses of the warm season rainfall climatology of the northeastern US using regional climate model simulations and radar rainfall fields, Adv. Water Resour., vol. 34, no. 2, p.184–204, Feb. (2011).

DOI: 10.1016/j.advwatres.2010.10.005

Google Scholar

[106] M. Grecu and W. F. Krajewski, Simulation study of the effects of model uncertainty in variational assimilation of radar data on rainfall forecasting, J. Hydrol., vol. 239, no. 1–4, p.85–96, Dec. (2000).

DOI: 10.1016/s0022-1694(00)00356-5

Google Scholar

[107] Y. -M. Chiang, F. -J. Chang, B. J. -D. Jou, and P. -F. Lin, Dynamic ANN for precipitation estimation and forecasting from radar observations, J. Hydrol., vol. 334, no. 1–2, p.250–261, Feb. (2007).

DOI: 10.1016/j.jhydrol.2006.10.021

Google Scholar

[108] M. Hagen, P. Meischner, and D. Atmosphare, Estimation of Rainfall Parameters from Polarimetric Radar Measurements POLDIRAD with, vol. 25, no. 10, p.849–853, (2000).

DOI: 10.1016/s1464-1909(00)00114-3

Google Scholar

[109] F. Amiryazdani, M. Khalili, F. Golkar, and M. Kalantarzadeh, weather radar calibration in centeral iran applaying ground based rain gauges data, in Sixth International Symposium on Hydrological Applications of Weather Radar, 2004, no. February, p.1.

Google Scholar