p.237
p.242
p.246
p.250
p.254
p.272
p.276
p.281
p.287
A Review of Uncertainty Sources on Weather Ground-Based Radar for Rainfall Estimation
Abstract:
Efforts in hydrometeorology are concentrated on finding the causes of the ground based radar uncertainty sources for rainfall estimation recently. The error sources are interactions between radar with atmosphere and topography. Radar singly often covers systematic error whereas atmospheric and topographic errors are relevant to location and precipitation pattern. This article reviews uncertainty sources on weather ground-based radar in order to rainfall estimation that have been discussed in nine main categories includes; the range effects, radar signal attenuation, beam blockage, vertical air motion and precipitation drift, ground clutter, anomalous propagation, vertical variability of the precipitation system, variability of the Z-R relationship and bright band. Topographic errors such as ground clutter and beam blockage primarily can be eliminated by attentive in site selection. Atmospheric errors such as vertical air motion and precipitation drift can filter or eliminated by calibration methods. Systematic errors include radar signal attenuation and anomalous propagation is the result of structural changes in the radar waves in space. Thus, this review is explored the characteristics of uncertainty error resources and a comprehensive appraisal of experimental procedures is provided.
Info:
Periodical:
Pages:
254-271
Citation:
Online since:
January 2016
Authors:
Keywords:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] C. J. Matyas, Use of Ground-based Radar for Climate-Scale Studies of Weather and Rainfall, Geogr. Compass, vol. 4, no. 9, p.1218–1237, Sep. (2010).
[2] S. Michaelides, V. Levizzani, E. Anagnostou, P. Bauer, T. Kasparis, and J. E. Lane, Precipitation: Measurement, remote sensing, climatology and modeling, Atmos. Res., vol. 94, no. 4, p.512–533, Dec. (2009).
[3] P. P. Mapiam, N. Sriwongsitanon, S. Chumchean, and A. Sharma, Effects of Rain Gauge Temporal Resolution on the Specification of a Z – R Relationship, J. Atmos. Ocean. Technol., vol. 26, no. 7, p.1302–1314, Jul. (2009).
[4] J. Marshal and W. Palmer, the distribution of raindrops with size, J. Meteorol., vol. 1, p.165–166, (1948).
[5] P. V. Mandapaka, W. F. Krajewski, G. J. Ciach, G. Villarini, and J. a. Smith, Estimation of radar-rainfall error spatial correlation, Adv. Water Resour., vol. 32, no. 7, p.1020–1030, Jul. (2009).
[6] O. Prat and A. Barros, Exploring the Transient Behavior of Z–R Relationships: Implications for Radar Rainfall Estimation, p.2127–2143, (2009).
[7] S. Yokoi, Y. Nakayama, Y. Agata, and T. Satomura, The relationship between observation intervals and errors in radar rainfall estimation over the Indochina Peninsula, Hydrol. Process., vol. 26, no. October 2012, p.834–842, (2012).
DOI: 10.1002/hyp.8297
[8] X. Zhang and R. Srinivasan, GIS-based spatial precipitation estimation using next generation radar and raingauge data, Environ. Model. Softw., vol. 25, no. 12, p.1781–1788, Dec. (2010).
[9] G. Zhao, R. Chu, T. Zhang, and W. Jia, Rainwater content estimated using polarimetric radar parameters in the Heihe River Basin, Atmos. Res., vol. 120–121, p.155–161, Feb. (2013).
[10] K. Ozturk and A. U. Yılmazer, Improving the accuracy of the radar rainfall estimates using gage adjustment techniques: Case study for west Anatolia, Turkey, Atmos. Res., vol. 86, no. 2, p.139–148, Nov. (2007).
[11] F. J. Tapiador, F. J. Turk, W. Petersen, A. Y. Hou, E. García-Ortega, L. a. T. Machado, C. F. Angelis, P. Salio, C. Kidd, G. J. Huffman, and M. de Castro, Global precipitation measurement: Methods, datasets and applications, Atmos. Res., vol. 104–105, p.70–97, Feb. (2012).
[12] D. J. Hill, Automated Bayesian quality control of streaming rain gauge data, Environ. Model. Softw., vol. 40, p.289–301, Feb. (2013).
[13] A. Battaglia, S. Tanelli, S. Kobayashi, D. Zrnic, R. J. Hogan, and C. Simmer, Multiple-scattering in radar systems: A review, J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 6, p.917–947, Apr. (2010).
[14] seed A. Chumchean, S. , sharma A., Radar rainfall error variance and its impact on radar rainfall calibration, Phys. Chem. Earth, vol. 28, p.27–39, (2003).
[15] P. Tabary, A. -A. Boumahmoud, H. Andrieu, R. J. Thompson, A. J. Illingworth, E. Le Bouar, and J. Testud, Evaluation of two 'integrated' polarimetric Quantitative Precipitation Estimation (QPE) algorithms at C-band, J. Hydrol., vol. 405, no. 3–4, p.248–260, Aug. (2011).
[16] B. -C. Seo and W. F. Krajewski, Investigation of the scale-dependent variability of radar-rainfall and rain gauge error covariance, Adv. Water Resour., vol. 34, no. 1, p.152–163, Jan. (2011).
[17] A. Rossa, K. Liechti, M. Zappa, M. Bruen, U. Germann, G. Haase, C. Keil, and P. Krahe, The COST 731 Action : A review on uncertainty propagation in advanced hydro-meteorological forecast systems, Atmos. Res., vol. 100, no. 2–3, p.150–167, (2011).
[18] T. Islam, M. a. Rico-Ramirez, D. Han, and P. K. Srivastava, Artificial intelligence techniques for clutter identification with polarimetric radar signatures, Atmos. Res., vol. 109–110, p.95–113, Jun. (2012).
[19] B. E. Vieux and J. M. Imgarten, On the scale-dependent propagation of hydrologic uncertainty using high-resolution X-band radar rainfall estimates, in Atmospheric Research, Jan-2012, vol. 103, p.96–105.
[20] M. Ambiental, U. P. De Catalunya, and J. Girona, Identification of Stratiform and Convective Areas Using Radar Application to the Improvement of DSD Analysis and Z-R Relations Data with, Phys. Chem. Earrh (B), vol. 25, no. 10, p.985–990, (2000).
[21] S. Chumchean, A. Seed, and A. Sharma, Correcting of real-time radar rainfall bias using a Kalman filtering approach, J. Hydrol., vol. 317, no. 1–2, p.123–137, Feb. (2006).
[22] K. Hood, S. Torres, and R. Palmer, Automatic Detection of Wind Turbine Clutter for Weather Radars, J. Atmos. Ocean. Technol., vol. 27, no. 11, p.1868–1880, Nov. (2010).
[23] F. Russo, G. Scialanga, L. Baldini, and E. Gorgucci, Advances in Geosciences Rainfall estimation and ground clutter rejection with dual polarization weather radar, p.127–130, (2006).
[24] A. Rahimi, A. Holt, G. Upton, and H. verworn, Attenuation Calibration of an X-Band Weather Radar Using a Microwave Link, Am. Meteorol. Soc., no. 2003, p.395–405, (2006).
DOI: 10.1175/jtech1855.1
[25] T. Bannister, R. Deslandes, and H. Richter, The end-to-end severe thunderstorm forecasting system in Australia : overview and training issues and, vol. 57, p.329–343, (2008).
[26] M. Jang, D. -I. Lee, C. -H. You, D. -S. Kim, M. Maki, J. -H. Jeong, and H. Uyeda, Quantitative precipitation estimates from radar reflectivity corrected by the SMA method, Atmos. Res., vol. 104–105, p.111–118, Feb. (2012).
[27] Bringi V. N. and Chandrasekar, Polarimetric Doppler wearther radar, 1st ed. UK: cambridge university press, 2001, p.1– 664.
[28] G. Villarini and W. F. Krajewski, Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall, Surv. Geophys., vol. 31, no. 1, p.107–129, Aug. (2009).
[29] A. D. Ochou, A. Nzeukou, and H. Sauvageot, Parametrization of drop size distribution with rain rate, Atmos. Res., vol. 84, no. 1, p.58–66, Mar. (2007).
[30] J. wan Baelen, F. Tridon, and Y. Pointin, Simultaneous X-band and K-band study of precipitation to derive specific Z–R relationships, Atmos. Res., vol. 94, no. 4, p.596–605, Dec. (2009).
[31] a. N. a. Schellart, W. J. Shepherd, and a. J. Saul, Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale, Adv. Water Resour., vol. 45, p.65–75, Sep. (2012).
[32] K. Ośródka, J. Szturc, and A. Jurczyk, Chain of data quality algorithms for 3-D single-polarization radar reflectivity (RADVOL-QC system), Meteorol. Appl., p. n/a–n/a, Jun. (2012).
DOI: 10.1002/met.1323
[33] S. Sebastianelli, F. Russo, F. Napolitano, and L. Baldini, On precipitation measurements collected by a weather radar and a rain gauge network, Nat. Hazards Earth Syst. Sci., vol. 13, no. 3, p.605–623, Mar. (2013).
[34] S. -T. Chen, P. -S. Yu, and B. -W. Liu, Comparison of neural network architectures and inputs for radar rainfall adjustment for typhoon events, J. Hydrol., vol. 405, no. 1–2, p.150–160, Jul. (2011).
[35] H. McMillan, B. Jackson, M. Clark, D. Kavetski, and R. Woods, Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models, J. Hydrol., vol. 400, no. 1–2, p.83–94, Mar. (2011).
[36] F. Quintero, D. Sempere-Torres, M. Berenguer, and E. Baltas, A scenario-incorporating analysis of the propagation of uncertainty to flash flood simulations, J. Hydrol., vol. 460–461, p.90–102, Aug. (2012).
[37] a. Berne and W. F. Krajewski, Radar for hydrology: Unfulfilled promise or unrecognized potential?, Adv. Water Resour., vol. 51, p.357–366, Jan. (2013).
[38] A. M. Rossa, F. Laudanna Del Guerra, M. Borga, F. Zanon, T. Settin, and D. Leuenberger, Radar-driven high-resolution hydro-meteorological forecasts of the 26 September 2007 Venice flash flood, J. Hydrol., vol. 394, no. 1–2, p.230–244, Nov. (2010).
[39] D. -S. Kim, M. Maki, and D. -I. Lee, Correction of X-band radar reflectivity and differential reflectivity for rain attenuation using differential phase, Atmos. Res., vol. 90, no. 1, p.1–9, Oct. (2008).
[40] J. Guy delrieu, Lorenz, Attenuation in Rain for X- and C-Band Weather Radar Systems: Sensitivity with respect to the Drop Size Distribution, p.57–68, (1999).
[41] M. N. Anagnostou, J. Kalogiros, E. N. Anagnostou, M. Tarolli, A. Papadopoulos, and M. Borga, Performance evaluation of high-resolution rainfall estimation by X-band dual-polarization radar for flash flood applications in mountainous basins, J. Hydrol., vol. 394, no. 1–2, p.4–16, Nov. (2010).
[42] G. Pegram, X. Llort, and D. Sempere-Torres, Radar rainfall: Separating signal and noise fields to generate meaningful ensembles, Atmos. Res., vol. 100, no. 2–3, p.226–236, May (2011).
[43] J. X. Yeo, Y. -H. Lee, L. S. Kumar, and J. T. Ong, Comparison of S-Band Radar Attenuation Prediction With Beacon Measurements, IEEE Trans. Antennas Propag., vol. 60, no. 10, p.4892–4900, Oct. (2012).
[44] P. Hazenberg, H. Leijnse, and R. Uijlenhoet, Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes, Water Resour. Res., vol. 47, no. 2, p. n/a–n/a, Feb. (2011).
DOI: 10.1029/2010wr009068
[45] W. L. Peirson, J. F. Beyá, M. L. Banner, J. S. Peral, and S. A. Azarmsa, Rain-induced attenuation of deep-water waves, J. Fluid Mech., vol. 724, no. 87, p.5–35, Apr. (2013).
DOI: 10.1017/jfm.2013.87
[46] Q. Cao and G. Zhang, Errors in Estimating Raindrop Size Distribution Parameters Employing Disdrometer and Simulated Raindrop Spectra, J. Appl. Meteorol. Climatol., vol. 48, no. 2, p.406–425, Feb. (2009).
[47] H. Leijnse, R. Uijlenhoet, and J. N. M. Stricker, Microwave link rainfall estimation: Effects of link length and frequency, temporal sampling, power resolution, and wet antenna attenuation, Adv. Water Resour., vol. 31, no. 11, p.1481–1493, Nov. (2008).
[48] H. Okamoto, Active remote sensing of cloud microphysics, Radiat. Process. Atmos. Ocean, vol. 19, no. 1, p.19–22, (2013).
[49] H. Okamoto, K. Sato, Y. Hagihara, and T. Nishizawa, Development of level 2 algorithms for EarthCARE CPR/ATLID, Radiat. Process. Atmos. Ocean, vol. 448, no. 1, p.448–451, (2013).
DOI: 10.1063/1.4804803
[50] S. A. Lack and N. I. Fox, An examination of the effect of wind-drift on radar-derived surface rainfall estimations, vol. 85, p.217–229, (2007).
[51] J. R. Taylor, W. J. Randel, and E. J. Jensen, Cirrus cloud-temperature interactions in the tropical tropopause layer: a case study, Atmos. Chem. Phys., vol. 11, no. 19, p.10085–10095, Oct. (2011).
[52] P. Ahammad, C. Williams, T. Kasparis, and C. Florida, Vertical Air Motion Estimates from the Disdrometer Flux Conservation Model and Related Experimental Observations, Proc. SPIE - Int. Soc. Opt. Eng., vol. 4729, no. May 2012, p.384–393, (2002).
DOI: 10.1117/12.477624
[53] a. Verworn and U. Haberlandt, Spatial interpolation of hourly rainfall – effect of additional information, variogram inference and storm properties, Hydrol. Earth Syst. Sci., vol. 15, no. 2, p.569–584, Feb. (2011).
[54] R. Schiemann, R. Erdin, M. Willi, C. Frei, M. Berenguer, and D. Sempere-Torres, Geostatistical radar-raingauge combination with nonparametric correlograms: methodological considerations and application in Switzerland, Hydrol. Earth Syst. Sci., vol. 15, no. 5, p.1515–1536, May (2011).
[55] M. Wang, W. Wei, Z. Ruan, Q. He, and R. Ge, Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert., Environ. Monit. Assess., vol. 185, no. 6, p.4819–34, Jun. (2013).
[56] F. S. Marzano, M. Lamantea, M. Montopoli, M. Herzog, H. Graf, and D. Cimini, Microwave remote sensing of the 2011 Plinian eruption of the Grímsvötn Icelandic volcano, Remote Sens. Environ., vol. 129, p.168–184, Feb. (2013).
[57] a. J. Litta, U. C. Mohanty, S. Kiran Prasad, M. Mohapatra, A. Tyagi, and S. C. Sahu, Simulation of tornado over Orissa (India) on March 31, 2009, using WRF–NMM model, Nat. Hazards, vol. 61, no. 3, p.1219–1242, Oct. (2011).
[58] Y. Liu, THE STUDY AND REAL-TIME IMPLEMENTATION OF ATTENUATION, p.1–217, (2008).
[59] S. Bertoldo, L. Bracco, R. Notarpietro, C. Lucianaz, O. Rorato, M. Allegretti, and G. Perona, A standalone application to monitor the stability of a low cost maintenance free X-band mini weather radar, using ground clutter echoes, 2012 Int. Conf. Electromagn. Adv. Appl., p.1040–1043, Sep. (2012).
[60] J. E. Nielsen, N. E. Jensen, and M. R. Rasmussen, Calibrating LAWR weather radar using laser disdrometers, Atmos. Res., Nov. (2012).
[61] T. Naghibi, M. Namvar, and F. Behnia, Optimal and robust waveform design for MIMO radars in the presence of clutter, Signal Processing, vol. 90, no. 4, p.1103–1117, Apr. (2010).
[62] L. Foresti and A. Pozdnoukhov, Exploration of alpine orographic precipitation patterns with radar image processing and clustering techniques, Meteorol. Appl., vol. 19, no. 4, p.407–419, Dec. (2012).
DOI: 10.1002/met.272
[63] J. Guan, N. Liu, J. Zhang, and J. Song, Multifractal correlation characteristic for radar detecting low-observable target in sea clutter, Signal Processing, vol. 90, no. 2, p.523–535, Feb. (2010).
[64] Z. Zhi-gang, Z. Jian-xue, and Z. Yong-gang, Research on the Influence of Ocean Environment on Sea Clutter, Procedia Environ. Sci., vol. 11, p.1108–1112, Jan. (2011).
[65] L. Zuo, C. Yao, and L. Men, Two Optimization Algorithms for Inversing Atmosphere Refractivity Profile from Radar Sea Clutter, Procedia Eng., vol. 15, p.2180–2185, Jan. (2011).
[66] L. Nie, W. Jiang, and Q. Fu, Marine Target Detection from Nonstationary Sea-Clutter Based On Topological Data Analysis, Procedia Eng., vol. 29, p.3429–3433, Jan. (2012).
[67] P. Crochet, Enhancing radar estimates of precipitation over complex terrain using information derived from an orographic precipitation model, J. Hydrol., vol. 377, no. 3–4, p.417–433, Oct. (2009).
[68] Z. Yaping and C. Minghu, Dynamical Weather Radar Beam Blockage Correction, in 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 2011, p.67–70.
[69] L. Bouilloud, G. Delrieu, B. Boudevillain, and P. -E. Kirstetter, Radar rainfall estimation in the context of post-event analysis of flash-flood events, J. Hydrol., vol. 394, no. 1–2, p.17–27, Nov. (2010).
[70] H. Andrieu, J. . Creutin, G. Delrieu, and D. Faure, Use of a weather radar for the hydrology of a mountainous area. Part I: radar measurement interpretation, J. Hydrol., vol. 193, no. 1–4, p.1–25, Jun. (1997).
[71] M. N. Anagnostou, J. Kalogiros, E. N. Anagnostou, and A. Papadopoulos, Experimental results on rainfall estimation in complex terrain with a mobile X-band polarimetric weather radar, Atmos. Res., vol. 94, no. 4, p.579–595, Dec. (2009).
[72] D. -K. Kim, Y. -H. Kim, and D. -E. Chang, A study of microphysical properties within a precipitation system using wind profiler spectra, Asia-Pacific J. Atmos. Sci., vol. 47, no. 5, p.413–420, Dec. (2011).
[73] a. Lenouo, Climatology of anomalous propagation radar over Douala, Cameroon, Meteorol. Appl., p. n/a–n/a, Apr. (2012).
DOI: 10.1002/met.1321
[74] S. Chumchean, A. Seed, and A. Sharma, An operational approach for classifying storms in real-time radar rainfall estimation, J. Hydrol., vol. 363, no. 1–4, p.1–17, Dec. (2008).
[75] Scott E. giangrande and Alexander V. Ryzhkov, Calibration of Dual-Polarization Radar in the Presence of Partial Beam Blockage, J. Atmos. Ocean. Technol., vol. 22, p.1156–1166, (2005).
DOI: 10.1175/jtech1766.1
[76] C. Z. van de Beek, H. Leijnse, J. N. M. Stricker, R. Uijlenhoet, and H. W. J. Russchenberg, Performance of high-resolution X-band radar for rainfall measurement in The Netherlands, Hydrol. Earth Syst. Sci., vol. 14, no. 2, p.205–221, Feb. (2010).
[77] W. F. Krajewski, B. Vignal, B. -C. Seo, and G. Villarini, Statistical model of the range-dependent error in radar-rainfall estimates due to the vertical profile of reflectivity, J. Hydrol., vol. 402, no. 3–4, p.306–316, May (2011).
[78] P. Mapiam and N. Sriwongsitanon, Climatological Z-R relationship for radar rainfall estimation in the upper Ping river basin, ScienceAsia, vol. 34, no. 1513, p.215–222, (2008).
[79] S. Efrat mrin, Robert, David c. , Goodrich, Sooroosh, Radar Z – R Relationship for Summer Monsoon Storms in Arizona, Weather Forecast., vol. 20, p.672–679, (2005).
DOI: 10.1175/waf878.1
[80] A. Henschke, Adjustment of the Z-R Relationship in Real-time for Use in South Florida, in World inviromental and water resources congress 2009Asce, 2009, no. 2000, p.6069–6080.
[81] M. Gabella, M. Bolliger, U. Germann, and G. Perona, Large sample evaluation of cumulative rainfall amounts in the Alps using a network of three radars, Atmos. Res., vol. 77, no. 1–4, p.256–268, Sep. (2005).
[82] X. T. Yu, Z. W. Yu, X. P. Rui, F. Li, Y. T. Xi, and H. Q. Chen, Discussion about the Determination Methods of Weighted Centroid of dBZ on Vector Radar Echoes, Procedia Eng., vol. 29, p.2240–2246, Jan. (2012).
[83] R. P. D. M. Frasson, L. K. da Cunha, and W. F. Krajewski, Assessment of the Thies optical disdrometer performance, Atmos. Res., vol. 101, no. 1–2, p.237–255, Jul. (2011).
[84] J. Jaffrain, A. Studzinski, and A. Berne, A network of disdrometers to quantify the small-scale variability of the raindrop size distribution, Water Resour. Res., vol. 47, no. August 2010, p.1–8, Apr. (2011).
DOI: 10.1029/2010wr009872
[85] Q. Cao, G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, Analysis of Video Disdrometer and Polarimetric Radar Data to Characterize Rain Microphysics in Oklahoma, J. Appl. Meteorol. Climatol., vol. 47, no. 8, p.2238–2255, Aug. (2008).
[86] F. S. Marzano, D. Cimini, and M. Montopoli, Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data, Atmos. Res., vol. 97, no. 4, p.583–600, Sep. (2010).
[87] M. Gabella, E. Morin, R. Notarpietro, and S. Michaelides, Winter precipitation fields in the Southeastern Mediterranean area as seen by the Ku-band spaceborne weather radar and two C-band ground-based radars, Atmos. Res., vol. 119, p.120–130, Jan. (2013).
[88] R. Uijlenhoet, Raindrop size distributions and radar reflectivity – rain rate relationships for radar hydrology *, Hydrol. Earth Syst. Sci., vol. 5, no. 4, p.615–627, (2001).
[89] L. Xumin and Y. Xue, Research on Vectorization of Weather Radar Image, Procedia Eng., vol. 15, no. 1, p.1298–1302, Jan. (2011).
[90] B. County, A Field Study of Reflectivity and Z – R Relations Using Vertically Pointing Radars and Disdrometers, J. Atmos. Ocean. Technol., vol. 26, no. 1, p.1120–1134, (2009).
[91] O. P. Prat and A. P. Barros, Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation – Experiments in the inner region of the Great Smoky Mountains, J. Hydrol., vol. 391, no. 1–2, p.141–156, Sep. (2010).
[92] A. seed Chumchean, Siriluk , Ashish sharma, Radar rainfall error variance and its impact on radar rainfall calibration, vol. 28, p.27–39, (2003).
[93] H. Andrieu, M. N. French, W. F. Krajewski, and K. P. Georgakakos, Stochastic–dynamical rainfall simulation based on weather radar volume scan data, Adv. Water Resour., vol. 26, no. 5, p.581–593, May (2003).
[94] J. Figureueras, A. Boumahmoud, P. Dupuy, and P. Tabary, Long-term monitoring of French polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at C-band, Q. J. R. Meteorol. Soc., vol. 138, no. October, p.2212–2228, (2012).
DOI: 10.1002/qj.1934
[95] T. . Trafalis, M. . Richman, a White, and B. Santosa, Data mining techniques for improved WSR-88D rainfall estimation, Comput. Ind. Eng., vol. 43, no. 4, p.775–786, Sep. (2002).
[96] J. Joss and U. Germann, Solutions and problems when applying qualitative and quantitative information from weather radar, Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos., vol. 25, no. 10–12, p.837–841, Jan. (2000).
[97] S. Vogl, P. Laux, W. Qiu, G. Mao, and H. Kunstmann, Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields, Hydrol. Earth Syst. Sci., vol. 16, no. 7, p.2311–2328, Jul. (2012).
[98] suzana R and Wardah T, Radar Hydrology : New Z / R Relationships for Klang River Basin , Malaysia, in International Conference on Environment Science and Engineering IPCBEE vol. 8 (2011) © (2011) IACSIT Press, Singapore, 2011, vol. 8, p.248–251.
[99] P. Ahammad, C. Williams, T. Kasparis, and C. Florida, Vertical Air Motion Estimates from the Disdrometer Flux Conservation Model and Related Experimental Observations, vol. 4729, no. May 2012. 2002, p.384–393.
DOI: 10.1117/12.477624
[100] M. Gabella, P. Torino, and C. Duca, Radar Rainfall Estimates Adjustment Techniques in an Alpine Environment Using Different, vol. 25, no. 10, p.927–931, (2000).
[101] U. Carlton and M. Niel, Experimental Test of the Effects of Z–R Law Variations on Comparison of WSR-88D Rainfall Amounts with Surface Rain Gauge and Disdrometer Data, Am. Meteorol. Soc., vol. 1, p.369–374, (2001).
[102] W. F. Krajewski, A. a. Ntelekos, and R. Goska, A GIS-based methodology for the assessment of weather radar beam blockage in mountainous regions: two examples from the US NEXRAD network, Comput. Geosci., vol. 32, no. 3, p.283–302, Apr. (2006).
[103] W. F. Krajewski and J. a. Smith, Radar hydrology: rainfall estimation, Adv. Water Resour., vol. 25, no. 8–12, p.1387–1394, Aug. (2002).
[104] M. Grecu and W. F. Krajewski, A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting, J. Hydrol., vol. 239, no. 1–4, p.69–84, Dec. (2000).
[105] J. K. Yeung, J. a. Smith, G. Villarini, A. a. Ntelekos, M. L. Baeck, and W. F. Krajewski, Analyses of the warm season rainfall climatology of the northeastern US using regional climate model simulations and radar rainfall fields, Adv. Water Resour., vol. 34, no. 2, p.184–204, Feb. (2011).
[106] M. Grecu and W. F. Krajewski, Simulation study of the effects of model uncertainty in variational assimilation of radar data on rainfall forecasting, J. Hydrol., vol. 239, no. 1–4, p.85–96, Dec. (2000).
[107] Y. -M. Chiang, F. -J. Chang, B. J. -D. Jou, and P. -F. Lin, Dynamic ANN for precipitation estimation and forecasting from radar observations, J. Hydrol., vol. 334, no. 1–2, p.250–261, Feb. (2007).
[108] M. Hagen, P. Meischner, and D. Atmosphare, Estimation of Rainfall Parameters from Polarimetric Radar Measurements POLDIRAD with, vol. 25, no. 10, p.849–853, (2000).
[109] F. Amiryazdani, M. Khalili, F. Golkar, and M. Kalantarzadeh, weather radar calibration in centeral iran applaying ground based rain gauges data, in Sixth International Symposium on Hydrological Applications of Weather Radar, 2004, no. February, p.1.