Preparation of Chitosan-Grafted Nanocellulose via Microwave-Initiate Method

Article Preview

Abstract:

Chitosan and cellulose are one of natural flocculants. Natural flocculants are non-toxic and biodegradable. Chitosan was grafted onto nanocellulose from empty fruit bunch (EFB) polymer by a irradiation from microwave initiated method. Effects of ratio chitosan to nanocellulose (0.2:1, 0.4:1, 0.6:1, 0.8:1 and 1:1) and irradiation time (1min, 2min, 3min, and 4min) on grafting were studied. Grafting was confirmed through weigh analysis and element analysis. The synthesis method was found to be both efficient and selective for grafting. Novelty, both of the natural polymers was successfully grafted. The grafting percentage was high for ratio cellulose to chitosan 1:1 with 56% at 2min reaction time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-284

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.P. Singh, S. Pal, S. Krishnamoorthy, P. Adhikary and S.K. Ali, High technology materials based on modified polysassharides. Pure Applied Chemical. 81 (2009) 525-547.

DOI: 10.1351/pac-con-08-08-17

Google Scholar

[2] J.P. Wang, Y.Z. Chen, X.W. Ge and H.Q. Yu, Gamma radiation-induced grafting of a cationic monomer onto chitosan as a flocculant. Chemosphere 66 (2007) 1752–1757.

DOI: 10.1016/j.chemosphere.2006.06.072

Google Scholar

[3] X. Wan, Y. Li, X. Wang, S. Chen, and X. Gu, Synthesis of cationic guar gum graftpolyacrylamide at low temperature and its flocculating properties. J. Euro. Poly. 43 (2007) 3655–3661.

DOI: 10.1016/j.eurpolymj.2007.05.037

Google Scholar

[4] Q. Chang, X. Hao, and L. Duan, Synthesis of crosslinked starch-graft-polyacrylamideco- sodium xanthate and its performance in waste water treatment. Hazardous Material. 159(2-3) (2008). 548–553.

DOI: 10.1016/j.jhazmat.2008.02.053

Google Scholar

[5] D. Tian & G.Q. Xie, Synthesis and flocculation characteristics of Konjac Glucomannan-g-polyacrylamide. Poly. Bulletin. 61 (2008) 277–285.

DOI: 10.1007/s00289-008-0950-6

Google Scholar

[6] G. Sen, R. Kumar, S. Ghosh, and S. Pal, A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. J. Carbo. Poly. 77 (2009) 822-831.

DOI: 10.1016/j.carbpol.2009.03.007

Google Scholar

[7] S. Ghosh, G. Sen, U. Jha and S. Pal, Novel biodegradable polymeric flocculant based on polyacrylamide-grafted tamarind kernel polysaccharide, J. Bior. Tech. 101(2010) 9638 9644.

DOI: 10.1016/j.biortech.2010.07.058

Google Scholar

[8] Q. Lin, S. Qian, C. Li, H. Pan, Z. Wu and G. Liu, Synthesis, flocculation and adsorption performance of amphoteric starch, J. Carb. Poly. 90 (2012) 275– 283.

DOI: 10.1016/j.carbpol.2012.05.035

Google Scholar

[9] Z. Yang, B. Yuan, X. Huang, J. Cai, H. Yang, A. Li and R. Cheng, Evaluation of the flocculation performance of carboxymethyl chitosan-graft- polyacrylamide, a novel amphoteric chemically bonded composite flocculant, J. Water Res. 46 (2012).

DOI: 10.1016/j.watres.2011.10.024

Google Scholar

[10] S. Pal, S. Ghorai, M.K. Dash, S. Ghosh and G. Udayabhanu, Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method, J. Haz. Mater. 192 (2011) 1580– 1588.

DOI: 10.1016/j.jhazmat.2011.06.083

Google Scholar

[11] A. Alemdar. and M. Sain, Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Sci. and Tech., 68 (2008) 557-565.

DOI: 10.1016/j.compscitech.2007.05.044

Google Scholar

[12] W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang and Y. Hai, Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. J. Carb. Poly. 83 (2011) 1804-1811.

DOI: 10.1016/j.carbpol.2010.10.040

Google Scholar

[13] B. M. Cherian, A. L. Leao, S.F. de Souza, L.M.M. Costa, G.M. de Olyveira, M. Kottaisamy, E.R. Nagarajan and S. Thomas, Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications, J. Carb. Poly. 86(4) (2011).

DOI: 10.1016/j.carbpol.2011.07.009

Google Scholar

[14] W.Y. Fung, K.H. Yuan and M.T. Liong, Agrowaste-Based Nanofibers as a Probiotic Encapsulant: Fabrication and Characterization. Agri. and Food Chem. 59 (2011) 8140-8147.

DOI: 10.1021/jf2009342

Google Scholar

[15] F. Renault, B. Sancey, P. -M. Badot and G. Crini, Chitosan for coagulation/flocculation processes – An eco-friendly approach, J. European Polymer. 45 (2009) 1337–1348.

DOI: 10.1016/j.eurpolymj.2008.12.027

Google Scholar

[16] Technical Association of Pulp and Paper Industry (TAPPI). Alpha-, beta- and gamma cellulose in pulp and wood. TAPPI Test Method T 203 om-93, (1988).

Google Scholar

[17] F. Fahma, S. Iwamoto, N. Hori, T. Iwata and A. Tkemura, Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB), J. Cellulose. 17 (2010) 977–985.

DOI: 10.1007/s10570-010-9436-4

Google Scholar

[18] S. Ghosh, G. Sen, U. Jha and S. Pal, Novel biodegradable polymeric flocculant based on polyacrylamide-grafted tamarind kernel polysaccharide, J. Bior. Tech. 101(2010) 9638- 9644.

DOI: 10.1016/j.biortech.2010.07.058

Google Scholar