High-Fidelity and Computationally Efficient Component-Wise Structural Models: An Overview of Applications and Perspectives

Article Preview

Abstract:

The Component-Wise approach (CW) is a novel structural modeling strategy that stemmed from the Carrera Unified Formulation (CUF). This work presents an overview of the enhanced capabilities of the CW for the static and dynamic analysis of structures, such as aircraft wings, civil buildings, and composite plates. The CW makes use of the advanced 1D CUF models. Such models exploit Lagrange polynomial expansions (LE) to model the displacement field above the cross-section of the structure. The use of LE allows the improvement of the 1D model capabilities. LE models provide 3D-like accuracies with far fewer computational costs. The use of LE leads to the CW. Although LE are 1D elements, every component of an engineering structure can be modeled via LE elements independently of their geometry, e.g. 2D transverse stiffeners and panels, and of their scale, e.g. fiber/matrix cells. The use of the same type of finite elements facilitates the finite element modeling to a great extent. For instance, no interface techniques are necessary. Moreover, in a CW model, the displacement unknowns are placed along the physical surfaces of the structure with no need for artificial lines and surfaces. Such a feature is promising in a CAD/FEM coupling scenario. The CW approach can be considered as an accurate and computationally cheap analysis tool for many structural problems. Such as progressive failure analyses, multiscale, impact problems and health-monitoring.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-196

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Bernoulli. Commentarii Academiae Scientiarum Imperialis Petropolitanae, chapter De vibrationibus et sono laminarum elasticarum. Petropoli, 1751.

Google Scholar

[2] L. Euler. De curvis elasticis, chapter Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattissimo Sensu Accept. Bousquet, 1744.

DOI: 10.5479/sil.318525.39088000877480

Google Scholar

[3] S. P. Timoshenko. On the corrections for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine, 41: 744-746, (1922).

DOI: 10.1080/14786442108636264

Google Scholar

[4] L. Da Vinci. Codex Madrid, volume I. 1493.

Google Scholar

[5] V. V. Novozhilov. Theory of Elasticity. Pergamon Press, (1961).

Google Scholar

[6] E. Carrera, A. Pagani, M. Petrolo, and E. Zappino. Recent developments on refined theories for beams with applications. Mechanical Engineering Reviews, 2(2): 1-30, 2015. doi: 10. 1299/mer. 14-00298.

DOI: 10.1299/mer.14-00298

Google Scholar

[7] G.R. Cowper. The shear coefficient in Timoshenko's beam theory. Journal of Applied Mechanics, 33(2): 335-340, (1966).

Google Scholar

[8] S.P. Timoshenko and J.N. Goodier. Theory of elasticity. McGraw-Hill, New York, (1970).

Google Scholar

[9] I. S. Sokolnikoff. Mathematical Theory of Elasticity. McGraw-Hill, New York, (1956).

Google Scholar

[10] A.A. Umanskij. Kručenije i izgib tonkostennykh aviokon-strukcij. Oborongiz, Moskva, 1939. (in Russian).

Google Scholar

[11] V. Z. Vlasov. Thin-walled elastic beams. National Science Foundation, Washington, (1961).

Google Scholar

[12] S. Benscoter. A theory of torsion bending for multicell beams. Journal of Applied Mechanics, 21(1): 25-34, (1954).

DOI: 10.1115/1.4010814

Google Scholar

[13] P. Ladevèze and J. Simmonds. New concepts for linear beam theory with arbitrary geometry and loading. European Journal of Mechanics - A/Solids, 17(3): 377-402, (1998).

DOI: 10.1016/s0997-7538(98)80051-x

Google Scholar

[14] P. Ladéveze and J. Simmonds. De nouveaux concepts en théorie des poutres pour des charges et des géométries quelconques. Comptes Rendus Acad. Sci. Paris, 332: 445-462, (1996).

Google Scholar

[15] B. Bognet, A. Leygue, and F. Chinesta. Separated representations of 3d elastic solutions in shell geometries. Advanced Modeling and Simulation in Engineering Sciences, 1(4), 2014. doi: 10. 1186/2213-7467-1-4.

DOI: 10.1186/2213-7467-1-4

Google Scholar

[16] P. Vidal, L. Gallimard, and O. Polit. Composite beam finite element based on the proper generalized decomposition. Computers and Structures, 102-103: 76-86, 2012. doi: 10. 1016/j. compstruc. 2012. 03. 008.

DOI: 10.1016/j.compstruc.2012.03.008

Google Scholar

[17] V.L. Berdichevsky. Equations of the theory of anisotropic inhomogeneous rods. Dokl. Akad. Nauk, 228: 558-561, (1976).

Google Scholar

[18] V.V. Volovoi, D.H. Hodges, V.L. Berdichevsky, and V.G. Sutyrin. Asymptotic theory for static behavior of elastic anisotropic I-beams. International Journal of Solid Structures, 36(7): 1017- 1043, (1999).

DOI: 10.1016/s0020-7683(97)00341-7

Google Scholar

[19] R. Schardt. Eine erweiterung der technischen biegetheorie zur berechnung prismatischer faltwerke. Der Stahlbau, 35: 161-171, (1966).

Google Scholar

[20] N. Silvestre and D. Camotim. First-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Structures, 40(9): 791-820, (2002).

DOI: 10.1016/s0263-8231(02)00026-5

Google Scholar

[21] K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon, Oxford, (1968).

Google Scholar

[22] K. Kapania and S. Raciti. Recent advances in analysis of laminated beams and plates, part I: Shear effects and buckling. AIAA Journal, 27(7): 923-935, (1989).

DOI: 10.2514/3.10202

Google Scholar

[23] K. Kapania and S. Raciti. Recent advances in analysis of laminated beams and plates, part II: Vibrations and wave propagation. AIAA Journal, 27(7): 935-946, (1989).

DOI: 10.2514/3.59909

Google Scholar

[24] L. Librescu and O. Song. On the static aeroelastic tailoring of composite aircraft swept wings modelled as thin-walled beam structures. Composites Engineering, 2: 497-512, (1992).

DOI: 10.1016/0961-9526(92)90039-9

Google Scholar

[25] E. Carrera and G. Giunta. Refined beam theories based on a unified formulation. International Journal of Applied Mechanics, 2(1): 117-143, 2010. doi: 10. 1142/S1758825110000500.

DOI: 10.1142/s1758825110000500

Google Scholar

[26] A.A. Khdeir and J.N. Reddy. Buckling of cross-ply laminated beams with arbitrary boundary conditions. Composite Structures, 37(1): 1-3, 1997. doi: 10. 1016/S0263-8223(97)00048-2.

DOI: 10.1016/s0263-8223(97)00048-2

Google Scholar

[27] A.A. Khdeir and J.N. Reddy. An exact solution for the bending of thin and thick cross-ply laminated beams. Composite Structures, 37(2): 195-203, 1997. doi: 10. 1016/S0263-8223(97)80012- 8.

DOI: 10.1016/s0263-8223(97)80012-8

Google Scholar

[28] K. S Surana and S. H Nguyen. Two-dimensional curved beam element with higher-order hierarchical transverse approximation for laminated composites. Computers and Structures, 36(3): 499-511, 1990. doi: 10. 1016/0045-7949(90)90284-9.

DOI: 10.1016/0045-7949(90)90284-9

Google Scholar

[29] M. Kameswara Rao, Y.M. Desai, and M.R. Chitnis. Free vibrations of laminated beams using mixed theory. Composite Structures, 52(2): 149-160, 2001. doi: 10. 1016/S0263-8223(00)00162- 8.

DOI: 10.1016/s0263-8223(00)00162-8

Google Scholar

[30] M. S. Qatu. Theories and analyses of thin and moderately thick laminated composite curved beams. International Journal of Solids and Structures, 30(20): 2743-2756, 1993. doi: 10. 1016/0020-7683(93)90152-W.

DOI: 10.1016/0020-7683(93)90152-w

Google Scholar

[31] M. Eisenberger, H. Abramovich, and O. Shulepov. Dynamic stiffness analysis of laminated beams using a first order shear deformation theory. Composite Structures, 31(4): 265-271, 1995. doi: 10. 1016/0263-8223(95)00091-7.

DOI: 10.1016/0263-8223(95)00091-7

Google Scholar

[32] P. Vidal, L. Gallimard, and O. Polit. Composite beam finite element based on the proper generalized decomposition. Computers and Structures, 102-103(0): 76-86, 2012. doi: 10. 1016/j. compstruc. 2012. 03. 008.

DOI: 10.1016/j.compstruc.2012.03.008

Google Scholar

[33] R.P. Shimpi and Y.M. Ghugal. A new layerwise trigonometric shear deformation theory for twolayered cross-ply beams. Composites Science and Technology, 61(9): 1271-1283, 2001. doi: 10. 1016/S0266-3538(01)00024-0.

DOI: 10.1016/s0266-3538(01)00024-0

Google Scholar

[34] E. Onate, A. Eijo, and S. Oller. Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory. Computer Methods in Applied Mechanics and Engineering, 213-216(0): 362-382, 2012. doi: 10. 1016/j. cma. 2011. 11. 023.

DOI: 10.1016/j.cma.2011.11.023

Google Scholar

[35] E. Carrera. Theories and finite elements for multilayered, anisotropic, composite plates and shells. Archives of Computational Methods in Engineering, 9(2): 87-140, 2002. doi: 10. 1007/BF02736649.

DOI: 10.1007/bf02736649

Google Scholar

[36] E. Carrera. Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Archives of Computational Methods in Engineering, 10(3): 216-296, 2003. doi: 10. 1007/BF02736224.

DOI: 10.1007/bf02736224

Google Scholar

[37] E. Carrera, G. Giunta, and M. Petrolo. Beam Structures: Classical and Advanced Theories. John Wiley & Sons, 2011. doi: 10. 1002/9781119978565.

DOI: 10.1002/9781119978565

Google Scholar

[38] E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino. Finite Element Analysis of Structures through Unified Formulation. John Wiley & Sons, (2014).

DOI: 10.1002/9781118536643

Google Scholar

[39] E. Carrera, G. Giunta, P. Nali, and M. Petrolo. Refined beam elements with arbitrary cross-section geometries. Computers and Structures, 88(5-6): 283-293, 2010. doi: 10. 1016/j. compstruc. 2009. 11. 002.

DOI: 10.1016/j.compstruc.2009.11.002

Google Scholar

[40] E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino. Comparisons between 1D (beam) and 2D (plate/shell) finite elements to analyze thin-walled structures. Aerotecnica Missili e Spazio, 2014. In Press.

DOI: 10.1007/bf03404671

Google Scholar

[41] E. Carrera, E. Zappino, and M. Petrolo. Analysis of thin-walled structures with longitudinal and transversal stiffeners. Journal of Applied Mechanics, 80, 2013. doi: 10. 1115/1. 4006939.

DOI: 10.1115/1.4006939

Google Scholar

[42] E. Carrera, E. Zappino, and M. Filippi. Free vibration analysis of thin-walled cylinders reinforced with longitudinal and transversal stiffeners. Journal of Vibration and Acoustics, 135, 2013. doi: 10. 1115/1. 4007559.

DOI: 10.1115/1.4007559

Google Scholar

[43] S.M. Ibrahim, E. Carrera, M. Petrolo, and E. Zappino. Buckling of composite thin walled beams by refined theory. Composite Structures, 94(2): 563-570, 2012. doi: 10. 1016/j. compstruct. 2011. 08. 020.

DOI: 10.1016/j.compstruct.2011.08.020

Google Scholar

[44] E. Carrera, M. Petrolo, and P. Nali. Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section. Shock and Vibration, 18: 485-502, 2011. doi: 10. 3233/SAV20100528.

DOI: 10.1155/2011/706541

Google Scholar

[45] A. Pagani, M. Boscolo, J. R. Banerjee, and E. Carrera. Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures. Journal of Sound and Vibration, 332(23): 6104-6127, 2013. doi: 10. 1016/j. jsv. 2013. 06. 023.

DOI: 10.1016/j.jsv.2013.06.023

Google Scholar

[46] A. Pagani, E. Carrera, M. Boscolo, and J. R. Banerjee. Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions. Composite Structures, 110: 305-316, 2014. doi: 10. 1016/j. compstruct. 2013. 12. 010.

DOI: 10.1016/j.compstruct.2013.12.010

Google Scholar

[47] E. Carrera and A. Varello. Dynamic response of thin-walled structures by variable kinematic one-dimensional models. Journal of Sound and Vibration, 331(24): 5268-5282, 2012. doi: 10. 1016/j. jsv. 2012. 07. 006.

DOI: 10.1016/j.jsv.2012.07.006

Google Scholar

[48] M. Petrolo. Flutter analysis of composite lifting surfaces by the 1D Carrera Unified Formulation and the doublet lattice method. Composite Structures, 95: 539-546, 2013. doi: 10. 1016/j. compstruct. 2012. 06. 021.

DOI: 10.1016/j.compstruct.2012.06.021

Google Scholar

[49] M. Petrolo. Advanced 1D structural models for flutter analysis of lifting surfaces. International Journal of Aeronautical and Space Sciences, 13(2): 199-209, 2012. doi: 10. 5139/IJASS. 2012. 13. 2. 199.

DOI: 10.5139/ijass.2012.13.2.199

Google Scholar

[50] A. Pagani, M. Petrolo, and E. Carrera. Flutter analysis by refined 1D dynamic stiffness elements and doublet lattice method. Advances in Aircraft and Spacecraft Science, 1(3): 291-310, 2014. doi: 10. 12989/aas. 2014. 1. 3. 291.

DOI: 10.12989/aas.2014.1.3.291

Google Scholar

[51] E. Carrera and M. Petrolo. Refined one-dimensional formulations for laminated structure analysis. AIAA Journal, 50(1): 176-189, 2012. doi: 10. 2514/1. J051219.

DOI: 10.2514/1.j051219

Google Scholar

[52] E. Carrera, M. Filippi, and F. Zappino. Free vibration analysis of laminated beam by polynomial, trigonometric, exponential and zig-zag theories. Journal of Composite Materials, 2013. doi: 10. 1177/0021998313497775.

DOI: 10.1177/0021998313497775

Google Scholar

[53] E. Carrera, M. Filippi, and F. Zappino. Laminated beam analysis by polynomial, trigonometric, exponential and zig-zag theories. European Journal of Mechanics A/Solids, 41: 58-69, 2013. doi: 10. 1016/j. euromechsol. 2013. 02. 006.

DOI: 10.1016/j.euromechsol.2013.02.006

Google Scholar

[54] M. Filippi, A. Pagani, M. Petrolo, G. Colonna, and E. Carrera. Static and free vibration analysis of laminated beams by refined theory based on chebyshev polynomials. Composite Structures, 132: 1248-1259, 2015. doi: 10. 1016/j. compstruct. 2015. 07. 014.

DOI: 10.1016/j.compstruct.2015.07.014

Google Scholar

[55] M. Carrera, E. and Filippi, P.K.R. Mahato, and A. Pagani. Advanced models for free vibration analysis of laminated beams with compact and thin-walled open/closed sections. Journal of Composite Materials, 49(17): 2085-2101, 2015. doi: 10. 1177/0021998314541570.

DOI: 10.1177/0021998314541570

Google Scholar

[56] G. Giunta, S. Belouettar, and E. Carrera. Analysis of FGM beams by means of classical and advanced theories. Mechanics of Advanced Materials and Structures, 17: 622-635, 2010. doi: 10. 1080/15376494. 2010. 518930.

DOI: 10.1080/15376494.2010.518930

Google Scholar

[57] D.S. Mashat, E. Carrera, A.M. Zenkour, S.A. Al Khateeb, and M. Filippi. Free vibration of fgm layered beams by various theories and finite elements. Composites: Part B, 59: 269-278, 2014. doi: 10. 1016/j. compositesb. 2013. 12. 008.

DOI: 10.1016/j.compositesb.2013.12.008

Google Scholar

[58] G. Giunta, Y. Koutsawa, S. Belouettar, and H. Hu. Static, free vibration and stability analysis of three-dimensional nano-beams by atomistic refined models accounting for surface free energy effect. International Journal of Solids and Structures, 50: 1460-1472, 2013. doi: 10. 1016/j. ijsolstr. 2013. 01. 025.

DOI: 10.1016/j.ijsolstr.2013.01.025

Google Scholar

[59] F. Biscani, G. Giunta, S. Belouettar, E. Carrera, and H. Hu. Variable kinematic beam elements coupled via Arlequin method. Composite Structures, 93: 697-708, 2011. doi: 10. 1016/j. compstruct. 2010. 08. 009.

DOI: 10.1016/j.compstruct.2010.08.009

Google Scholar

[60] E. Carrera and A. Pagani. Multi-line enhanced beam model for the analysis of laminated composite structures. Composites: Part B, 57: 112-119, 2014. doi: 10. 1016/j. compositesb. 2013. 09. 046.

DOI: 10.1016/j.compositesb.2013.09.046

Google Scholar

[61] E. Carrera and M. Petrolo. On the effectiveness of higher-order terms in refined beam theories. Journal of Applied Mechanics, 78, 2011. doi: 10. 1115/1. 4002207.

DOI: 10.1115/1.4002207

Google Scholar

[62] E. Carrera, F. Miglioretti, and M. Petrolo. Computations and evaluations of higher-order theories for free vibration analysis of beams. Journal of Sound and Vibration, 331: 4269-4284, 2012. doi: 10. 1016/j. jsv. 2012. 04. 017.

DOI: 10.1016/j.jsv.2012.04.017

Google Scholar

[63] E. Carrera, A. Pagani, and F. Zangallo. Thin-walled beams subjected to load factors and nonstructural masses. International Journal of Mechanical Sciences, 81: 109-119, 2014. doi: 10. 1016/j. ijmecsci. 2014. 02. 015.

DOI: 10.1016/j.ijmecsci.2014.02.015

Google Scholar

[64] A. Pagani, F. Zangallo, and E. Carrera. Influence of non-structural localized inertia on free vibration response of thin-walled structures by variable kinematic beam formulations. Shock and Vibration, 2014, 2014. Article ID 141982, doi: 10. 1155/2014/141982.

DOI: 10.1155/2014/141982

Google Scholar

[65] E. Carrera and A. Pagani. Accurate response of wing structures to free-vibration, load factors, and non-structural masses. AIAA Journal, In Press, 2015. doi: 10. 2514/1. J054164.

DOI: 10.2514/1.j054164

Google Scholar

[66] E. Carrera, M. Filippi, and F. Zappino. Free vibration analysis of rotating composite blades via Carrera Unified Formulation. Composite Structures, 106: 317-325, 2013. doi: 10. 1016/j. compstruct. 2013. 05. 055.

DOI: 10.1016/j.compstruct.2013.05.055

Google Scholar

[67] E. Carrera, M. Filippi, and F. Zappino. Analysis of rotor dynamic by one-dimensional variable kinematic theories. Journal of Engineering for Gas Turbines and Power, 135(9), 2013. doi: 10. 1115/1. 4024381.

DOI: 10.1115/1.4024381

Google Scholar

[68] E. Carrera and M. Filippi. Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials. Journal of Engineering for Gas Turbines and Power, 136(9), 2014. doi: 10. 1115/1. 4027192.

DOI: 10.1115/1.4027192

Google Scholar

[69] A. Varello and E. Carrera. Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models. Smart Structures and Systems, 13(4): 659-683, 2014. doi: 10. 12989/sss. 2014. 13. 4. 659.

DOI: 10.12989/sss.2014.13.4.659

Google Scholar

[70] G. Giunta, D. Crisafulli, S. Belouettar, and E. Carrera. A thermo-mechanical analysis of functionally graded beams via hierarchical modelling. Composite Structures, 95: 676-690, 2013. doi: 10. 1016/j. compstruct. 2012. 08. 013.

DOI: 10.1016/j.compstruct.2012.08.013

Google Scholar

[71] F. Miglioretti, E. Carrera, and M. Petrolo. Variable kinematic beam elements for electromechanical analysis. Smart Structures and Systems, 13(4): 517-546, 2014. doi: 10. 12989/sss. 2014. 13. 4. 517.

DOI: 10.12989/sss.2014.13.4.517

Google Scholar

[72] E. Carrera, M. Petrolo, and A. Varello. Advanced beam formulations for free vibration analysis of conventional and joined wings. Journal of Aerospace Engineering, 24(2): 282-293, 2012. doi: 10. 1061/(ASCE)AS. 1943-5525. 0000130.

DOI: 10.1061/(asce)as.1943-5525.0000130

Google Scholar

[73] E. Carrera, M. Petrolo, and E. Zappino. Performance of CUF approach to analyze the structural behavior of slender bodies. Journal of Structural Engineering, 138(2): 285-297, 2012. doi: 10. 1061/(ASCE)ST. 1943-541X. 0000402.

DOI: 10.1061/(asce)st.1943-541x.0000402

Google Scholar

[74] M. Petrolo, E. Zappino, and E. Carrera. Refined free vibration analysis of one-dimensional structures with compact and bridge-like cross-sections. Thin-Walled Structures, 56: 49-61, 2012. doi: 10. 1016/j. tws. 2012. 03. 011.

DOI: 10.1016/j.tws.2012.03.011

Google Scholar

[75] E. Carrera, A. Pagani, and M. Petrolo. Classical, refined and component-wise theories for static analysis of reinforced-shell wing structures. AIAA Journal, 51(5): 1255-1268, 2013. doi: 10. 2514/1. J052331.

DOI: 10.2514/1.j052331

Google Scholar

[76] E. Carrera, A. Pagani, and M. Petrolo. Component-wise method applied to vibration of wing structures. Journal of Applied Mechanics, 80(4), 2013. doi: 10. 1115/1. 4007849.

DOI: 10.1115/1.4007849

Google Scholar

[77] A. Pagani, M. Petrolo, G. Colonna, and E. Carrera. Dynamic response of aerospace structures by means of refined beam theories. Aerospace Science and Technology, 46: 360-373, 2015. doi: 10. 1016/j. ast. 2015. 08. 005.

DOI: 10.1016/j.ast.2015.08.005

Google Scholar

[78] E. Carrera and E. Zappino. Carrera unified formulation for free-vibration analysis of aircraft structures. AIAA Journal, In Press, 2015. doi: 10. 2514/1. J054265.

DOI: 10.2514/1.j054265

Google Scholar

[79] E. Carrera, A. Pagani, and M. Petrolo. Refined 1D finite elements for the analysis of secondary, primary and complete civil engineering structures. Journal of Structural Engineering, 2014. In Press, doi: 10. 1061/(ASCE)ST. 1943-541X. 0001076.

DOI: 10.1061/(asce)st.1943-541x.0001076

Google Scholar

[80] E. Carrera and A. Pagani. Free vibration analysis of civil engineering structures by componentwise models. Journal of Sound and Vibration, 2014. In Press, doi: 10. 1016/j. jsv. 2014. 04. 063.

DOI: 10.1016/j.jsv.2014.04.063

Google Scholar

[81] E. Carrera, M. Maiarú, and M. Petrolo. Component-wise analysis of laminated anisotropic composites. International Journal of Solids and Structures, 49: 1839-1851, 2012. doi: 10. 1016/j. ijsolstr. 2012. 03. 025.

DOI: 10.1016/j.ijsolstr.2012.03.025

Google Scholar

[82] E. Carrera, M. Maiarú, M. Petrolo, and G. Giunta. A refined 1D element for the structural analysis of single and multiple fiber/matrix cells. Composite Structures, 96: 455-468, 2013. doi: 10. 1016/j. compstruct. 2012. 09. 012.

DOI: 10.1016/j.compstruct.2012.09.012

Google Scholar

[83] M. Petrolo, E. Carrera, and A.S.A.S. Alawami. Free vibration analysis of damaged beams via refined models. Advances in Aricraft and Spacecraft Sciences, In Press, 2015. In Press.

DOI: 10.12989/aas.2016.3.1.095

Google Scholar

[84] J.N. Reddy. Mechanics of laminated composite plates and shells. Theory and Analysis. CRC Press, 2nd edition, (2004).

Google Scholar