[1]
D. Bernoulli. Commentarii Academiae Scientiarum Imperialis Petropolitanae, chapter De vibrationibus et sono laminarum elasticarum. Petropoli, 1751.
Google Scholar
[2]
L. Euler. De curvis elasticis, chapter Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattissimo Sensu Accept. Bousquet, 1744.
DOI: 10.5479/sil.318525.39088000877480
Google Scholar
[3]
S. P. Timoshenko. On the corrections for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine, 41: 744-746, (1922).
DOI: 10.1080/14786442108636264
Google Scholar
[4]
L. Da Vinci. Codex Madrid, volume I. 1493.
Google Scholar
[5]
V. V. Novozhilov. Theory of Elasticity. Pergamon Press, (1961).
Google Scholar
[6]
E. Carrera, A. Pagani, M. Petrolo, and E. Zappino. Recent developments on refined theories for beams with applications. Mechanical Engineering Reviews, 2(2): 1-30, 2015. doi: 10. 1299/mer. 14-00298.
DOI: 10.1299/mer.14-00298
Google Scholar
[7]
G.R. Cowper. The shear coefficient in Timoshenko's beam theory. Journal of Applied Mechanics, 33(2): 335-340, (1966).
Google Scholar
[8]
S.P. Timoshenko and J.N. Goodier. Theory of elasticity. McGraw-Hill, New York, (1970).
Google Scholar
[9]
I. S. Sokolnikoff. Mathematical Theory of Elasticity. McGraw-Hill, New York, (1956).
Google Scholar
[10]
A.A. Umanskij. Kručenije i izgib tonkostennykh aviokon-strukcij. Oborongiz, Moskva, 1939. (in Russian).
Google Scholar
[11]
V. Z. Vlasov. Thin-walled elastic beams. National Science Foundation, Washington, (1961).
Google Scholar
[12]
S. Benscoter. A theory of torsion bending for multicell beams. Journal of Applied Mechanics, 21(1): 25-34, (1954).
DOI: 10.1115/1.4010814
Google Scholar
[13]
P. Ladevèze and J. Simmonds. New concepts for linear beam theory with arbitrary geometry and loading. European Journal of Mechanics - A/Solids, 17(3): 377-402, (1998).
DOI: 10.1016/s0997-7538(98)80051-x
Google Scholar
[14]
P. Ladéveze and J. Simmonds. De nouveaux concepts en théorie des poutres pour des charges et des géométries quelconques. Comptes Rendus Acad. Sci. Paris, 332: 445-462, (1996).
Google Scholar
[15]
B. Bognet, A. Leygue, and F. Chinesta. Separated representations of 3d elastic solutions in shell geometries. Advanced Modeling and Simulation in Engineering Sciences, 1(4), 2014. doi: 10. 1186/2213-7467-1-4.
DOI: 10.1186/2213-7467-1-4
Google Scholar
[16]
P. Vidal, L. Gallimard, and O. Polit. Composite beam finite element based on the proper generalized decomposition. Computers and Structures, 102-103: 76-86, 2012. doi: 10. 1016/j. compstruc. 2012. 03. 008.
DOI: 10.1016/j.compstruc.2012.03.008
Google Scholar
[17]
V.L. Berdichevsky. Equations of the theory of anisotropic inhomogeneous rods. Dokl. Akad. Nauk, 228: 558-561, (1976).
Google Scholar
[18]
V.V. Volovoi, D.H. Hodges, V.L. Berdichevsky, and V.G. Sutyrin. Asymptotic theory for static behavior of elastic anisotropic I-beams. International Journal of Solid Structures, 36(7): 1017- 1043, (1999).
DOI: 10.1016/s0020-7683(97)00341-7
Google Scholar
[19]
R. Schardt. Eine erweiterung der technischen biegetheorie zur berechnung prismatischer faltwerke. Der Stahlbau, 35: 161-171, (1966).
Google Scholar
[20]
N. Silvestre and D. Camotim. First-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Structures, 40(9): 791-820, (2002).
DOI: 10.1016/s0263-8231(02)00026-5
Google Scholar
[21]
K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon, Oxford, (1968).
Google Scholar
[22]
K. Kapania and S. Raciti. Recent advances in analysis of laminated beams and plates, part I: Shear effects and buckling. AIAA Journal, 27(7): 923-935, (1989).
DOI: 10.2514/3.10202
Google Scholar
[23]
K. Kapania and S. Raciti. Recent advances in analysis of laminated beams and plates, part II: Vibrations and wave propagation. AIAA Journal, 27(7): 935-946, (1989).
DOI: 10.2514/3.59909
Google Scholar
[24]
L. Librescu and O. Song. On the static aeroelastic tailoring of composite aircraft swept wings modelled as thin-walled beam structures. Composites Engineering, 2: 497-512, (1992).
DOI: 10.1016/0961-9526(92)90039-9
Google Scholar
[25]
E. Carrera and G. Giunta. Refined beam theories based on a unified formulation. International Journal of Applied Mechanics, 2(1): 117-143, 2010. doi: 10. 1142/S1758825110000500.
DOI: 10.1142/s1758825110000500
Google Scholar
[26]
A.A. Khdeir and J.N. Reddy. Buckling of cross-ply laminated beams with arbitrary boundary conditions. Composite Structures, 37(1): 1-3, 1997. doi: 10. 1016/S0263-8223(97)00048-2.
DOI: 10.1016/s0263-8223(97)00048-2
Google Scholar
[27]
A.A. Khdeir and J.N. Reddy. An exact solution for the bending of thin and thick cross-ply laminated beams. Composite Structures, 37(2): 195-203, 1997. doi: 10. 1016/S0263-8223(97)80012- 8.
DOI: 10.1016/s0263-8223(97)80012-8
Google Scholar
[28]
K. S Surana and S. H Nguyen. Two-dimensional curved beam element with higher-order hierarchical transverse approximation for laminated composites. Computers and Structures, 36(3): 499-511, 1990. doi: 10. 1016/0045-7949(90)90284-9.
DOI: 10.1016/0045-7949(90)90284-9
Google Scholar
[29]
M. Kameswara Rao, Y.M. Desai, and M.R. Chitnis. Free vibrations of laminated beams using mixed theory. Composite Structures, 52(2): 149-160, 2001. doi: 10. 1016/S0263-8223(00)00162- 8.
DOI: 10.1016/s0263-8223(00)00162-8
Google Scholar
[30]
M. S. Qatu. Theories and analyses of thin and moderately thick laminated composite curved beams. International Journal of Solids and Structures, 30(20): 2743-2756, 1993. doi: 10. 1016/0020-7683(93)90152-W.
DOI: 10.1016/0020-7683(93)90152-w
Google Scholar
[31]
M. Eisenberger, H. Abramovich, and O. Shulepov. Dynamic stiffness analysis of laminated beams using a first order shear deformation theory. Composite Structures, 31(4): 265-271, 1995. doi: 10. 1016/0263-8223(95)00091-7.
DOI: 10.1016/0263-8223(95)00091-7
Google Scholar
[32]
P. Vidal, L. Gallimard, and O. Polit. Composite beam finite element based on the proper generalized decomposition. Computers and Structures, 102-103(0): 76-86, 2012. doi: 10. 1016/j. compstruc. 2012. 03. 008.
DOI: 10.1016/j.compstruc.2012.03.008
Google Scholar
[33]
R.P. Shimpi and Y.M. Ghugal. A new layerwise trigonometric shear deformation theory for twolayered cross-ply beams. Composites Science and Technology, 61(9): 1271-1283, 2001. doi: 10. 1016/S0266-3538(01)00024-0.
DOI: 10.1016/s0266-3538(01)00024-0
Google Scholar
[34]
E. Onate, A. Eijo, and S. Oller. Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory. Computer Methods in Applied Mechanics and Engineering, 213-216(0): 362-382, 2012. doi: 10. 1016/j. cma. 2011. 11. 023.
DOI: 10.1016/j.cma.2011.11.023
Google Scholar
[35]
E. Carrera. Theories and finite elements for multilayered, anisotropic, composite plates and shells. Archives of Computational Methods in Engineering, 9(2): 87-140, 2002. doi: 10. 1007/BF02736649.
DOI: 10.1007/bf02736649
Google Scholar
[36]
E. Carrera. Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Archives of Computational Methods in Engineering, 10(3): 216-296, 2003. doi: 10. 1007/BF02736224.
DOI: 10.1007/bf02736224
Google Scholar
[37]
E. Carrera, G. Giunta, and M. Petrolo. Beam Structures: Classical and Advanced Theories. John Wiley & Sons, 2011. doi: 10. 1002/9781119978565.
DOI: 10.1002/9781119978565
Google Scholar
[38]
E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino. Finite Element Analysis of Structures through Unified Formulation. John Wiley & Sons, (2014).
DOI: 10.1002/9781118536643
Google Scholar
[39]
E. Carrera, G. Giunta, P. Nali, and M. Petrolo. Refined beam elements with arbitrary cross-section geometries. Computers and Structures, 88(5-6): 283-293, 2010. doi: 10. 1016/j. compstruc. 2009. 11. 002.
DOI: 10.1016/j.compstruc.2009.11.002
Google Scholar
[40]
E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino. Comparisons between 1D (beam) and 2D (plate/shell) finite elements to analyze thin-walled structures. Aerotecnica Missili e Spazio, 2014. In Press.
DOI: 10.1007/bf03404671
Google Scholar
[41]
E. Carrera, E. Zappino, and M. Petrolo. Analysis of thin-walled structures with longitudinal and transversal stiffeners. Journal of Applied Mechanics, 80, 2013. doi: 10. 1115/1. 4006939.
DOI: 10.1115/1.4006939
Google Scholar
[42]
E. Carrera, E. Zappino, and M. Filippi. Free vibration analysis of thin-walled cylinders reinforced with longitudinal and transversal stiffeners. Journal of Vibration and Acoustics, 135, 2013. doi: 10. 1115/1. 4007559.
DOI: 10.1115/1.4007559
Google Scholar
[43]
S.M. Ibrahim, E. Carrera, M. Petrolo, and E. Zappino. Buckling of composite thin walled beams by refined theory. Composite Structures, 94(2): 563-570, 2012. doi: 10. 1016/j. compstruct. 2011. 08. 020.
DOI: 10.1016/j.compstruct.2011.08.020
Google Scholar
[44]
E. Carrera, M. Petrolo, and P. Nali. Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section. Shock and Vibration, 18: 485-502, 2011. doi: 10. 3233/SAV20100528.
DOI: 10.1155/2011/706541
Google Scholar
[45]
A. Pagani, M. Boscolo, J. R. Banerjee, and E. Carrera. Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures. Journal of Sound and Vibration, 332(23): 6104-6127, 2013. doi: 10. 1016/j. jsv. 2013. 06. 023.
DOI: 10.1016/j.jsv.2013.06.023
Google Scholar
[46]
A. Pagani, E. Carrera, M. Boscolo, and J. R. Banerjee. Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions. Composite Structures, 110: 305-316, 2014. doi: 10. 1016/j. compstruct. 2013. 12. 010.
DOI: 10.1016/j.compstruct.2013.12.010
Google Scholar
[47]
E. Carrera and A. Varello. Dynamic response of thin-walled structures by variable kinematic one-dimensional models. Journal of Sound and Vibration, 331(24): 5268-5282, 2012. doi: 10. 1016/j. jsv. 2012. 07. 006.
DOI: 10.1016/j.jsv.2012.07.006
Google Scholar
[48]
M. Petrolo. Flutter analysis of composite lifting surfaces by the 1D Carrera Unified Formulation and the doublet lattice method. Composite Structures, 95: 539-546, 2013. doi: 10. 1016/j. compstruct. 2012. 06. 021.
DOI: 10.1016/j.compstruct.2012.06.021
Google Scholar
[49]
M. Petrolo. Advanced 1D structural models for flutter analysis of lifting surfaces. International Journal of Aeronautical and Space Sciences, 13(2): 199-209, 2012. doi: 10. 5139/IJASS. 2012. 13. 2. 199.
DOI: 10.5139/ijass.2012.13.2.199
Google Scholar
[50]
A. Pagani, M. Petrolo, and E. Carrera. Flutter analysis by refined 1D dynamic stiffness elements and doublet lattice method. Advances in Aircraft and Spacecraft Science, 1(3): 291-310, 2014. doi: 10. 12989/aas. 2014. 1. 3. 291.
DOI: 10.12989/aas.2014.1.3.291
Google Scholar
[51]
E. Carrera and M. Petrolo. Refined one-dimensional formulations for laminated structure analysis. AIAA Journal, 50(1): 176-189, 2012. doi: 10. 2514/1. J051219.
DOI: 10.2514/1.j051219
Google Scholar
[52]
E. Carrera, M. Filippi, and F. Zappino. Free vibration analysis of laminated beam by polynomial, trigonometric, exponential and zig-zag theories. Journal of Composite Materials, 2013. doi: 10. 1177/0021998313497775.
DOI: 10.1177/0021998313497775
Google Scholar
[53]
E. Carrera, M. Filippi, and F. Zappino. Laminated beam analysis by polynomial, trigonometric, exponential and zig-zag theories. European Journal of Mechanics A/Solids, 41: 58-69, 2013. doi: 10. 1016/j. euromechsol. 2013. 02. 006.
DOI: 10.1016/j.euromechsol.2013.02.006
Google Scholar
[54]
M. Filippi, A. Pagani, M. Petrolo, G. Colonna, and E. Carrera. Static and free vibration analysis of laminated beams by refined theory based on chebyshev polynomials. Composite Structures, 132: 1248-1259, 2015. doi: 10. 1016/j. compstruct. 2015. 07. 014.
DOI: 10.1016/j.compstruct.2015.07.014
Google Scholar
[55]
M. Carrera, E. and Filippi, P.K.R. Mahato, and A. Pagani. Advanced models for free vibration analysis of laminated beams with compact and thin-walled open/closed sections. Journal of Composite Materials, 49(17): 2085-2101, 2015. doi: 10. 1177/0021998314541570.
DOI: 10.1177/0021998314541570
Google Scholar
[56]
G. Giunta, S. Belouettar, and E. Carrera. Analysis of FGM beams by means of classical and advanced theories. Mechanics of Advanced Materials and Structures, 17: 622-635, 2010. doi: 10. 1080/15376494. 2010. 518930.
DOI: 10.1080/15376494.2010.518930
Google Scholar
[57]
D.S. Mashat, E. Carrera, A.M. Zenkour, S.A. Al Khateeb, and M. Filippi. Free vibration of fgm layered beams by various theories and finite elements. Composites: Part B, 59: 269-278, 2014. doi: 10. 1016/j. compositesb. 2013. 12. 008.
DOI: 10.1016/j.compositesb.2013.12.008
Google Scholar
[58]
G. Giunta, Y. Koutsawa, S. Belouettar, and H. Hu. Static, free vibration and stability analysis of three-dimensional nano-beams by atomistic refined models accounting for surface free energy effect. International Journal of Solids and Structures, 50: 1460-1472, 2013. doi: 10. 1016/j. ijsolstr. 2013. 01. 025.
DOI: 10.1016/j.ijsolstr.2013.01.025
Google Scholar
[59]
F. Biscani, G. Giunta, S. Belouettar, E. Carrera, and H. Hu. Variable kinematic beam elements coupled via Arlequin method. Composite Structures, 93: 697-708, 2011. doi: 10. 1016/j. compstruct. 2010. 08. 009.
DOI: 10.1016/j.compstruct.2010.08.009
Google Scholar
[60]
E. Carrera and A. Pagani. Multi-line enhanced beam model for the analysis of laminated composite structures. Composites: Part B, 57: 112-119, 2014. doi: 10. 1016/j. compositesb. 2013. 09. 046.
DOI: 10.1016/j.compositesb.2013.09.046
Google Scholar
[61]
E. Carrera and M. Petrolo. On the effectiveness of higher-order terms in refined beam theories. Journal of Applied Mechanics, 78, 2011. doi: 10. 1115/1. 4002207.
DOI: 10.1115/1.4002207
Google Scholar
[62]
E. Carrera, F. Miglioretti, and M. Petrolo. Computations and evaluations of higher-order theories for free vibration analysis of beams. Journal of Sound and Vibration, 331: 4269-4284, 2012. doi: 10. 1016/j. jsv. 2012. 04. 017.
DOI: 10.1016/j.jsv.2012.04.017
Google Scholar
[63]
E. Carrera, A. Pagani, and F. Zangallo. Thin-walled beams subjected to load factors and nonstructural masses. International Journal of Mechanical Sciences, 81: 109-119, 2014. doi: 10. 1016/j. ijmecsci. 2014. 02. 015.
DOI: 10.1016/j.ijmecsci.2014.02.015
Google Scholar
[64]
A. Pagani, F. Zangallo, and E. Carrera. Influence of non-structural localized inertia on free vibration response of thin-walled structures by variable kinematic beam formulations. Shock and Vibration, 2014, 2014. Article ID 141982, doi: 10. 1155/2014/141982.
DOI: 10.1155/2014/141982
Google Scholar
[65]
E. Carrera and A. Pagani. Accurate response of wing structures to free-vibration, load factors, and non-structural masses. AIAA Journal, In Press, 2015. doi: 10. 2514/1. J054164.
DOI: 10.2514/1.j054164
Google Scholar
[66]
E. Carrera, M. Filippi, and F. Zappino. Free vibration analysis of rotating composite blades via Carrera Unified Formulation. Composite Structures, 106: 317-325, 2013. doi: 10. 1016/j. compstruct. 2013. 05. 055.
DOI: 10.1016/j.compstruct.2013.05.055
Google Scholar
[67]
E. Carrera, M. Filippi, and F. Zappino. Analysis of rotor dynamic by one-dimensional variable kinematic theories. Journal of Engineering for Gas Turbines and Power, 135(9), 2013. doi: 10. 1115/1. 4024381.
DOI: 10.1115/1.4024381
Google Scholar
[68]
E. Carrera and M. Filippi. Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials. Journal of Engineering for Gas Turbines and Power, 136(9), 2014. doi: 10. 1115/1. 4027192.
DOI: 10.1115/1.4027192
Google Scholar
[69]
A. Varello and E. Carrera. Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models. Smart Structures and Systems, 13(4): 659-683, 2014. doi: 10. 12989/sss. 2014. 13. 4. 659.
DOI: 10.12989/sss.2014.13.4.659
Google Scholar
[70]
G. Giunta, D. Crisafulli, S. Belouettar, and E. Carrera. A thermo-mechanical analysis of functionally graded beams via hierarchical modelling. Composite Structures, 95: 676-690, 2013. doi: 10. 1016/j. compstruct. 2012. 08. 013.
DOI: 10.1016/j.compstruct.2012.08.013
Google Scholar
[71]
F. Miglioretti, E. Carrera, and M. Petrolo. Variable kinematic beam elements for electromechanical analysis. Smart Structures and Systems, 13(4): 517-546, 2014. doi: 10. 12989/sss. 2014. 13. 4. 517.
DOI: 10.12989/sss.2014.13.4.517
Google Scholar
[72]
E. Carrera, M. Petrolo, and A. Varello. Advanced beam formulations for free vibration analysis of conventional and joined wings. Journal of Aerospace Engineering, 24(2): 282-293, 2012. doi: 10. 1061/(ASCE)AS. 1943-5525. 0000130.
DOI: 10.1061/(asce)as.1943-5525.0000130
Google Scholar
[73]
E. Carrera, M. Petrolo, and E. Zappino. Performance of CUF approach to analyze the structural behavior of slender bodies. Journal of Structural Engineering, 138(2): 285-297, 2012. doi: 10. 1061/(ASCE)ST. 1943-541X. 0000402.
DOI: 10.1061/(asce)st.1943-541x.0000402
Google Scholar
[74]
M. Petrolo, E. Zappino, and E. Carrera. Refined free vibration analysis of one-dimensional structures with compact and bridge-like cross-sections. Thin-Walled Structures, 56: 49-61, 2012. doi: 10. 1016/j. tws. 2012. 03. 011.
DOI: 10.1016/j.tws.2012.03.011
Google Scholar
[75]
E. Carrera, A. Pagani, and M. Petrolo. Classical, refined and component-wise theories for static analysis of reinforced-shell wing structures. AIAA Journal, 51(5): 1255-1268, 2013. doi: 10. 2514/1. J052331.
DOI: 10.2514/1.j052331
Google Scholar
[76]
E. Carrera, A. Pagani, and M. Petrolo. Component-wise method applied to vibration of wing structures. Journal of Applied Mechanics, 80(4), 2013. doi: 10. 1115/1. 4007849.
DOI: 10.1115/1.4007849
Google Scholar
[77]
A. Pagani, M. Petrolo, G. Colonna, and E. Carrera. Dynamic response of aerospace structures by means of refined beam theories. Aerospace Science and Technology, 46: 360-373, 2015. doi: 10. 1016/j. ast. 2015. 08. 005.
DOI: 10.1016/j.ast.2015.08.005
Google Scholar
[78]
E. Carrera and E. Zappino. Carrera unified formulation for free-vibration analysis of aircraft structures. AIAA Journal, In Press, 2015. doi: 10. 2514/1. J054265.
DOI: 10.2514/1.j054265
Google Scholar
[79]
E. Carrera, A. Pagani, and M. Petrolo. Refined 1D finite elements for the analysis of secondary, primary and complete civil engineering structures. Journal of Structural Engineering, 2014. In Press, doi: 10. 1061/(ASCE)ST. 1943-541X. 0001076.
DOI: 10.1061/(asce)st.1943-541x.0001076
Google Scholar
[80]
E. Carrera and A. Pagani. Free vibration analysis of civil engineering structures by componentwise models. Journal of Sound and Vibration, 2014. In Press, doi: 10. 1016/j. jsv. 2014. 04. 063.
DOI: 10.1016/j.jsv.2014.04.063
Google Scholar
[81]
E. Carrera, M. Maiarú, and M. Petrolo. Component-wise analysis of laminated anisotropic composites. International Journal of Solids and Structures, 49: 1839-1851, 2012. doi: 10. 1016/j. ijsolstr. 2012. 03. 025.
DOI: 10.1016/j.ijsolstr.2012.03.025
Google Scholar
[82]
E. Carrera, M. Maiarú, M. Petrolo, and G. Giunta. A refined 1D element for the structural analysis of single and multiple fiber/matrix cells. Composite Structures, 96: 455-468, 2013. doi: 10. 1016/j. compstruct. 2012. 09. 012.
DOI: 10.1016/j.compstruct.2012.09.012
Google Scholar
[83]
M. Petrolo, E. Carrera, and A.S.A.S. Alawami. Free vibration analysis of damaged beams via refined models. Advances in Aricraft and Spacecraft Sciences, In Press, 2015. In Press.
DOI: 10.12989/aas.2016.3.1.095
Google Scholar
[84]
J.N. Reddy. Mechanics of laminated composite plates and shells. Theory and Analysis. CRC Press, 2nd edition, (2004).
Google Scholar