[1]
M. Jebahi, D. Andre, F. Dau, J.L. Charles, I. Iordanoff, Simulation of Vickers indentation of silica glass, J Non Cryst Sol 378 (2013) 15-24.
DOI: 10.1016/j.jnoncrysol.2013.06.007
Google Scholar
[2]
D. Andre, J.L. Charles, I. Iordanoff, I. Terreros, GranOO, a discrete workbench (2013) http: /www. granoo. org.
DOI: 10.1002/9781119116356.ch4
Google Scholar
[3]
C. Ha-Minh, F. Boussu, T. Kanit, D. Crépin, A. Imad, Analysis on failure mechanisms of an interlock woven fabric under ballistic impact, engineering Failure Analysis, (2013), pp.2179-2187.
DOI: 10.1016/j.engfailanal.2011.07.011
Google Scholar
[4]
C. Ha-Minh, A. Imad, T. Kanit, F. Boussu, Numerical analysis of a ballistic impact on textile fabric, Int. J. of Mechanical Sciences, 69 (2013), pp.32-39.
DOI: 10.1016/j.ijmecsci.2013.01.014
Google Scholar
[5]
F.S. Kelley, Mesh requirements for the analysis of a stress concentration by the specified boundary displacement method, ASME, Proceedings of the Second Computers In Engineering International Conference (1982).
Google Scholar
[6]
J.B. Ransom, S.L. McCleary, M.A. Aminpour, N.F. Jr. Knight, Computational methods for global/local analysis, Technical Memorandum 107591, (1992) NASA.
Google Scholar
[7]
K.M. Mao, C.T. Sun, A refined global-local finite element analysis method, Int. Jo. Numer Methods Eng 32 (1991) 29-43.
DOI: 10.1002/nme.1620320103
Google Scholar
[8]
J.D. Whitcomb, Iterative global/local finite element analysis, Comp. Struct 40(4) (1991) 1027-1031.
DOI: 10.1016/0045-7949(91)90334-i
Google Scholar
[9]
K. Terada, N. Kikuchi, A class of general algorithms for multiscale analyses of heteroge- neous media, Comput Methods Appl Mech Eng 190 (2001) 5427-5464.
Google Scholar
[10]
M. Jebahi, J.L. Charles, F. Dau, L. Illoul, I. Iordanoff, 3D coupling approach between discrete and continuum models for dynamic simulations (DEM-CNEM), Comput. Methods in Appl. Mech. Eng. 255 (2012) 169-209.
DOI: 10.1016/j.cma.2012.11.021
Google Scholar
[11]
H.B. Dhia, G. Rateau, The Arlequin method as a flexible engineering design tool, Int. J. Numer. Methods Eng. 62(11) (2005) 1442–1462.
DOI: 10.1002/nme.1229
Google Scholar
[12]
M. Jebahi, F. Dau, J.L. Charles, I. Iordanoff, Simulation of laser-induced damage in fused silica using the DEM-CNEM coupling method, under work, (2014).
DOI: 10.1002/9781119115274.ch3
Google Scholar
[13]
I. Iordanoff and co., Solid third body analysis using a discrete approach: influence of adhesion and particle size on macroscopic properties, J. of tribology, 124(3), 530-538, (2002).
DOI: 10.1115/1.1456089
Google Scholar
[14]
D. André, I. Iordanoff, JL. Charles, J. Néauport, Discrete element method to simulate continuous material by using the cohesive beam model, 213-216 (2012), p.113–125.
DOI: 10.1016/j.cma.2011.12.002
Google Scholar
[15]
G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques, Fur die Reine und Angewandte Mathematik 133 (1907) 97-178.
DOI: 10.1515/crll.1908.133.97
Google Scholar
[16]
J. Yvonnet, D. Ryckelynk, P. Lorong, P. Chinesta, Interpolation naturelle sur les domaines non convexes par l'utilisation du diagramme de Voronoi contraint-Méthode des éléments C-Naturels, Revue Europ éenne des éléments finis, 12(4) (2003).
DOI: 10.3166/reef.12.487-509
Google Scholar
[17]
E. Rougier, A. Munjiza, and N. W. M. John., Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics., International journal for numerical methods in engineering, 62 (2004. ), pp.856-879.
DOI: 10.1002/nme.1092
Google Scholar
[18]
D. Andre, I. Iordanoff, J. -L. Charles, J. Neauport, Discrete element method to simulate continuous material by using the cohesive beam model, Comput Methods Appl Mech Eng 213-216 (2012) 113–125.
DOI: 10.1016/j.cma.2011.12.002
Google Scholar
[19]
C.T. Sun, R.S. Vaidya, Prediction of composite properties from a representative volume element, Compos. Sciences Technol, 56 (1996) 171-179.
Google Scholar
[20]
R. Chermaneanu, Représentation de la variabilité des propriétés mécaniques d'un CMO à l, échelle microscopique: Méthodes de construction des distributions statistiques, PhD Thesis (2012) Université de Bordeaux I, France.
Google Scholar
[21]
J. -M. Berthelot, Matériaux Composites - Comportement mécanique des structures, Masson, Second edition (1996) Paris.
Google Scholar
[22]
Z. Hashin, On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry, J Mech Phys Solids, 13 (1965) 119-134.
DOI: 10.1016/0022-5096(65)90015-3
Google Scholar
[23]
R. Hill, Theory of mechanical properties of fibre-strengthened materials: I. Elastic Behavior, J Mech Phys Solids 12 (1964) 199 - 212.
Google Scholar
[30]
D. Yang, J. Ye, Y. Tan, Y. Sheng., Modeling progressive delamination of laminated composite by discrete element method, Computational Materials Science 50 (2011) 858-864.
DOI: 10.1016/j.commatsci.2010.10.022
Google Scholar
[34]
L. Maheo, F. Dau, D. André, J. L Charles, I. Iordanoff, A promising way to model cracks in composites using a Discrete Element Method, Composite Part B. http: /dx. doi. org/10. 1016/j. compositesb. 2014. 11. 032.
DOI: 10.1016/j.compositesb.2014.11.032
Google Scholar
[35]
Editions ISTE-Wiley (Hermes Science publishing) Vol. 1 (Published in 2015): Title: Discrete element method to model 3D continuous materials Author(s): Mohamed Jebahi, Damien André, Inigo Terreros, Ivan Iordanoff Vol. 2 (to be published in 2015): Title: Discrete-continuum coupling method to simulate highly dynamic multi-scale to problems: Simulation of Laser-induced damage in silica glass Author(s): Mohamed Jebahi, Frédéric Dau, Jean-Luc Charles, Ivan Iordanoff Vol. 3 (to be published in 2015-2016): Title: GranOO: 3D discrete element Workbench for highly dynamic thermo-mechanical analysis Author(s): Mohamed Jebahi, Jean-Luc Charles, Damien Andre.
DOI: 10.1002/9781119115274
Google Scholar
[36]
B.D. Le, F. Dau, J.L. Charles, I. Iordanoff Modeling damages and cracks growth in composite with a 3D discrete element method, Composite Part B (accepted in July 2015 with minor revisions, to be published).
DOI: 10.1016/j.compositesb.2016.01.021
Google Scholar
[37]
J. Girardot, F. Dau Modeling dry fabrics under impact with a 3D discrete element method proceedings of the 20th International Conference on Composite Materials (ICCM20), Copenhagen, Danemark, 19-24th July (2015).
Google Scholar
[38]
C. Guillebaud-Bonnafous, D. Vasconcellos, F. Touchard, L. Chocinski-Arnault Experimental and numerical investigation of the interface between epoxy matrix and hemp yarn, Composite Part A, 43(2012) 2046–(2058).
DOI: 10.1016/j.compositesa.2012.07.015
Google Scholar
[39]
Xiaohong Wang*, Boming Zhang, Shanyi Du, Yufen Wu, Xinyang Sun Numerical simulation of the fiber fragmentation process in single-fiber composites, Materials and Design 31(2010) 2464–2470.
DOI: 10.1016/j.matdes.2009.11.050
Google Scholar
[40]
Amélie Perrier, Fabienne Touchard, Laurence Chocinski-Arnault, David Mellier Analyse du comportement de l'interface fibre/matrice dans des composites chanvre/époxy par corrélation d'images, Comptes Rendus des JNC 19–Lyon - 29, 30 juin et 01 juillet (2015).
DOI: 10.3166/rcma.22.327-340
Google Scholar
[41]
Ha-Minh C., Imad A., Kanit T., & Boussu F. (2013). Numerical analysis of a ballistic impact on textile fabric. International Journal of Mechanical Sciences, 69, 32–39. doi: 10. 1016/j. ijmecsci. 2013. 01. 014.
DOI: 10.1016/j.ijmecsci.2013.01.014
Google Scholar
[42]
Y Duan, M Keefe, ED Wetzel, TA Bogetti, B Powers, JE Kirkwood, and KM Kirkwood (2005). Effects of friction on the ballistic performance of a high-strength fabric structure. In Impact Loading of Lightweight Structures., WITpress.
DOI: 10.1016/j.compstruct.2004.03.026
Google Scholar