A Promising Way to Model Damage in Composite and Dry Fabrics Using a Discrete Element Method (DEM)

Article Preview

Abstract:

A promising way to model fracture mechanics with the use of an original Discrete Element Method (DEM) is proposed. After proving the ability of the method to capture kinetic damage induced by cracking phenomena in brittle materials such as silica [1], taking advantage of the method for composite materials applications is the main purpose of this work. This paper highlights recent and current developments to prove abilities of the DEM to give some answers to challenges : i) use the present DEM to model damage mechanisms (matrix cracking, debonding, fiber break and delamination) in a composite material ii) deal with impact applications on dry fabrics using the DEM. All developments are made in the home made software GRANOO (GRANular Objet Oriented) [2]. The promising results are commented and the on going developments are exposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-136

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Jebahi, D. Andre, F. Dau, J.L. Charles, I. Iordanoff, Simulation of Vickers indentation of silica glass, J Non Cryst Sol 378 (2013) 15-24.

DOI: 10.1016/j.jnoncrysol.2013.06.007

Google Scholar

[2] D. Andre, J.L. Charles, I. Iordanoff, I. Terreros, GranOO, a discrete workbench (2013) http: /www. granoo. org.

DOI: 10.1002/9781119116356.ch4

Google Scholar

[3] C. Ha-Minh, F. Boussu, T. Kanit, D. Crépin, A. Imad, Analysis on failure mechanisms of an interlock woven fabric under ballistic impact, engineering Failure Analysis, (2013), pp.2179-2187.

DOI: 10.1016/j.engfailanal.2011.07.011

Google Scholar

[4] C. Ha-Minh, A. Imad, T. Kanit, F. Boussu, Numerical analysis of a ballistic impact on textile fabric, Int. J. of Mechanical Sciences, 69 (2013), pp.32-39.

DOI: 10.1016/j.ijmecsci.2013.01.014

Google Scholar

[5] F.S. Kelley, Mesh requirements for the analysis of a stress concentration by the specified boundary displacement method, ASME, Proceedings of the Second Computers In Engineering International Conference (1982).

Google Scholar

[6] J.B. Ransom, S.L. McCleary, M.A. Aminpour, N.F. Jr. Knight, Computational methods for global/local analysis, Technical Memorandum 107591, (1992) NASA.

Google Scholar

[7] K.M. Mao, C.T. Sun, A refined global-local finite element analysis method, Int. Jo. Numer Methods Eng 32 (1991) 29-43.

DOI: 10.1002/nme.1620320103

Google Scholar

[8] J.D. Whitcomb, Iterative global/local finite element analysis, Comp. Struct 40(4) (1991) 1027-1031.

DOI: 10.1016/0045-7949(91)90334-i

Google Scholar

[9] K. Terada, N. Kikuchi, A class of general algorithms for multiscale analyses of heteroge- neous media, Comput Methods Appl Mech Eng 190 (2001) 5427-5464.

Google Scholar

[10] M. Jebahi, J.L. Charles, F. Dau, L. Illoul, I. Iordanoff, 3D coupling approach between discrete and continuum models for dynamic simulations (DEM-CNEM), Comput. Methods in Appl. Mech. Eng. 255 (2012) 169-209.

DOI: 10.1016/j.cma.2012.11.021

Google Scholar

[11] H.B. Dhia, G. Rateau, The Arlequin method as a flexible engineering design tool, Int. J. Numer. Methods Eng. 62(11) (2005) 1442–1462.

DOI: 10.1002/nme.1229

Google Scholar

[12] M. Jebahi, F. Dau, J.L. Charles, I. Iordanoff, Simulation of laser-induced damage in fused silica using the DEM-CNEM coupling method, under work, (2014).

DOI: 10.1002/9781119115274.ch3

Google Scholar

[13] I. Iordanoff and co., Solid third body analysis using a discrete approach: influence of adhesion and particle size on macroscopic properties, J. of tribology, 124(3), 530-538, (2002).

DOI: 10.1115/1.1456089

Google Scholar

[14] D. André, I. Iordanoff, JL. Charles, J. Néauport, Discrete element method to simulate continuous material by using the cohesive beam model, 213-216 (2012), p.113–125.

DOI: 10.1016/j.cma.2011.12.002

Google Scholar

[15] G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques, Fur die Reine und Angewandte Mathematik 133 (1907) 97-178.

DOI: 10.1515/crll.1908.133.97

Google Scholar

[16] J. Yvonnet, D. Ryckelynk, P. Lorong, P. Chinesta, Interpolation naturelle sur les domaines non convexes par l'utilisation du diagramme de Voronoi contraint-Méthode des éléments C-Naturels, Revue Europ éenne des éléments finis, 12(4) (2003).

DOI: 10.3166/reef.12.487-509

Google Scholar

[17] E. Rougier, A. Munjiza, and N. W. M. John., Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics., International journal for numerical methods in engineering, 62 (2004. ), pp.856-879.

DOI: 10.1002/nme.1092

Google Scholar

[18] D. Andre, I. Iordanoff, J. -L. Charles, J. Neauport, Discrete element method to simulate continuous material by using the cohesive beam model, Comput Methods Appl Mech Eng 213-216 (2012) 113–125.

DOI: 10.1016/j.cma.2011.12.002

Google Scholar

[19] C.T. Sun, R.S. Vaidya, Prediction of composite properties from a representative volume element, Compos. Sciences Technol, 56 (1996) 171-179.

Google Scholar

[20] R. Chermaneanu, Représentation de la variabilité des propriétés mécaniques d'un CMO à l, échelle microscopique: Méthodes de construction des distributions statistiques, PhD Thesis (2012) Université de Bordeaux I, France.

Google Scholar

[21] J. -M. Berthelot, Matériaux Composites - Comportement mécanique des structures, Masson, Second edition (1996) Paris.

Google Scholar

[22] Z. Hashin, On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry, J Mech Phys Solids, 13 (1965) 119-134.

DOI: 10.1016/0022-5096(65)90015-3

Google Scholar

[23] R. Hill, Theory of mechanical properties of fibre-strengthened materials: I. Elastic Behavior, J Mech Phys Solids 12 (1964) 199 - 212.

Google Scholar

[30] D. Yang, J. Ye, Y. Tan, Y. Sheng., Modeling progressive delamination of laminated composite by discrete element method, Computational Materials Science 50 (2011) 858-864.

DOI: 10.1016/j.commatsci.2010.10.022

Google Scholar

[34] L. Maheo, F. Dau, D. André, J. L Charles, I. Iordanoff, A promising way to model cracks in composites using a Discrete Element Method, Composite Part B. http: /dx. doi. org/10. 1016/j. compositesb. 2014. 11. 032.

DOI: 10.1016/j.compositesb.2014.11.032

Google Scholar

[35] Editions ISTE-Wiley (Hermes Science publishing) Vol. 1 (Published in 2015): Title: Discrete element method to model 3D continuous materials Author(s): Mohamed Jebahi, Damien André, Inigo Terreros, Ivan Iordanoff  Vol. 2 (to be published in 2015): Title: Discrete-continuum coupling method to simulate highly dynamic multi-scale to problems: Simulation of Laser-induced damage in silica glass Author(s): Mohamed Jebahi, Frédéric Dau, Jean-Luc Charles, Ivan Iordanoff  Vol. 3 (to be published in 2015-2016): Title: GranOO: 3D discrete element Workbench for highly dynamic thermo-mechanical analysis Author(s): Mohamed Jebahi, Jean-Luc Charles, Damien Andre.

DOI: 10.1002/9781119115274

Google Scholar

[36] B.D. Le, F. Dau, J.L. Charles, I. Iordanoff Modeling damages and cracks growth in composite with a 3D discrete element method, Composite Part B (accepted in July 2015 with minor revisions, to be published).

DOI: 10.1016/j.compositesb.2016.01.021

Google Scholar

[37] J. Girardot, F. Dau Modeling dry fabrics under impact with a 3D discrete element method proceedings of the 20th International Conference on Composite Materials (ICCM20), Copenhagen, Danemark, 19-24th July (2015).

Google Scholar

[38] C. Guillebaud-Bonnafous, D. Vasconcellos, F. Touchard, L. Chocinski-Arnault Experimental and numerical investigation of the interface between epoxy matrix and hemp yarn, Composite Part A, 43(2012) 2046–(2058).

DOI: 10.1016/j.compositesa.2012.07.015

Google Scholar

[39] Xiaohong Wang*, Boming Zhang, Shanyi Du, Yufen Wu, Xinyang Sun Numerical simulation of the fiber fragmentation process in single-fiber composites, Materials and Design 31(2010) 2464–2470.

DOI: 10.1016/j.matdes.2009.11.050

Google Scholar

[40] Amélie Perrier, Fabienne Touchard, Laurence Chocinski-Arnault, David Mellier Analyse du comportement de l'interface fibre/matrice dans des composites chanvre/époxy par corrélation d'images, Comptes Rendus des JNC 19–Lyon - 29, 30 juin et 01 juillet (2015).

DOI: 10.3166/rcma.22.327-340

Google Scholar

[41] Ha-Minh C., Imad A., Kanit T., & Boussu F. (2013). Numerical analysis of a ballistic impact on textile fabric. International Journal of Mechanical Sciences, 69, 32–39. doi: 10. 1016/j. ijmecsci. 2013. 01. 014.

DOI: 10.1016/j.ijmecsci.2013.01.014

Google Scholar

[42] Y Duan, M Keefe, ED Wetzel, TA Bogetti, B Powers, JE Kirkwood, and KM Kirkwood (2005). Effects of friction on the ballistic performance of a high-strength fabric structure. In Impact Loading of Lightweight Structures., WITpress.

DOI: 10.1016/j.compstruct.2004.03.026

Google Scholar