Fatigue Properties of Aerospace Z-Pinned Composites

Article Preview

Abstract:

This paper presents an experimental study into the effect of through-thickness z-pin reinforcement on the in-plane and out-of-plane (delamination) fatigue properties of carbon-epoxy composites used in aerospace structures. The in-plane fatigue strength and fatigue life (load cycles-to-failure) of aerospace composite materials are reduced by z-pins. The in-plane compressive fatigue properties decrease when the volume content of z-pins is increased. Reductions to the in-plane fatigue properties are due to microstructural damage caused by the z-pins. However, the out-of-plane (delamination) fatigue properties of composites are increased greatly by z-pins. The mode I, mode II and mixed mode I/II delamination fatigue properties increase rapidly with increasing volume content of z-pins. The improvement is due to the z-pins forming a large-scale bridging zone along the delamination which resists fatigue crack growth. The work clearly reveals that a trade-off exists between the in-plane and out-of-plane fatigue properties of z-pinned composites. Improvements to the delamination fatigue properties come at the expense of lower in-plane fatigue performance, and this is a key consideration for the design of z-pinned aerospace composite structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-75

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P. Mouritz, Review of z-pinned composite laminates, Comp A. 38 (2007) 2383-2397.

Google Scholar

[2] K.L. Rugg, B.N. Cox, R Massabò, Mixed mode delamination of polymer composite laminates reinforced through the thickness by z-fibres, Comp A. 33 (2002) 177-190.

DOI: 10.1016/s1359-835x(01)00109-9

Google Scholar

[3] M. Grassi, X. Zhang, Finite element analyses of mode I interlaminar delamination in z-fibre reinforced composite laminates, Comp Sci & Tech. 63 (2003) 1815-1832.

DOI: 10.1016/s0266-3538(03)00134-9

Google Scholar

[4] W. Yan, H-Y. Liu, Y-W. Mai, Numerical study of the mode I delamination toughness of z-pinned laminates, Comp Sci & Tech, 63 (2003) 1481-1493.

DOI: 10.1016/s0266-3538(03)00167-2

Google Scholar

[5] H-Y. Liu HY, W. Yan, X-Y. Yu, Y-W. Mai YW, Experimental study on effect of loading rate on mode I delamination of z-pin reinforced laminates. Comp Sci & Tech. 67 (2007) 1294–1301.

DOI: 10.1016/j.compscitech.2006.10.001

Google Scholar

[6] D.D.R. Cartié, M. Troulis, I.K. Partridge, Delamination of z-pinned carbon fibre reinforced laminates. Comp. Sci. Tech. 66 (2006) 855-861.

DOI: 10.1016/j.compscitech.2004.12.018

Google Scholar

[7] A.P. Mouritz, Delamination properties of z-pinned composites in hot-wet environment, Comp A. 52 (2013) 134-142.

DOI: 10.1016/j.compositesa.2013.03.010

Google Scholar

[8] X. Zhang, L. Hounslow, M. Grassi, Improvement to low-velocity impact and compression-after-impact performance of z-fibre pinning, In: Proceedings of the 13th International Conference on Composite Materials, July 2003, San Diego.

DOI: 10.1016/j.compscitech.2006.02.029

Google Scholar

[9] M.D. Isa, S. Feih, A.P. Mouritz, Compression fatigue properties of quasi-isotropic z-pinned carbon/epoxy laminate with barely visible impact damage. Comp Struct. 93 (2011) 2222-2230.

DOI: 10.1016/j.compstruct.2011.03.015

Google Scholar

[10] D.D.R. Cartié, J-M. Laffaille, I.K. Partridge IK, A.J. Brunner, Fatigue delamination behaviour of unidirectional carbon fibre/epoxy laminates reinforced by Z-Fiber® pinning, Eng Frac Mech. 76 (2009) 2834-2845.

DOI: 10.1016/j.engfracmech.2009.07.018

Google Scholar

[11] A.Y. Zhang, H-Y Liu, A.P. Mouritz, Y-W. Mai, Experimental study and computer simulation of z-pin reinforcement under cycle fatigue, Comp A. 39 (2008) 406-414.

DOI: 10.1016/j.compositesa.2007.09.006

Google Scholar

[12] K. Pingkarawat, A.P. Mouritz, Improving the mode I delamination fatigue resistance of composites using z-pins, Comp Sci Tech. 92 (2014) 70-76.

DOI: 10.1016/j.compscitech.2013.12.009

Google Scholar

[13] F. Pegorin, K. Pingkarawat, S. Daynes, A.P. Mouritz, Mode II interlaminar fatigue properties of z-pinned carbon fibre reinforced epoxy composites, Comp A. 67 (2014), 8-15.

DOI: 10.1016/j.compositesa.2014.08.008

Google Scholar

[14] F. Pegorin, K. Pingkarawat, S. Daynes, A.P. Mouritz, Influence of z-pin length on the delamination toughness and fatigue resistance of pinned composites, Comp B. 78 (2015) 298-307.

DOI: 10.1016/j.compositesb.2015.03.093

Google Scholar

[15] F. Pegorin, K. Pingkarawat, A.P. Mouritz, Comparative study of the mode I and II delamination fatigue properties of z-pinned aircraft composites, Mat & Design. 15 (2015) 139-146.

DOI: 10.1016/j.matdes.2014.08.072

Google Scholar

[16] A.P. Mouritz, B.N. Cox, A mechanistic interpretation of the comparative in-plane mechanical properties of 3D woven, stitched, and pinned composites, Comp A. 41 (2010) 709-728.

DOI: 10.1016/j.compositesa.2010.02.001

Google Scholar

[17] P. Chang, A.P. Mouritz, B.N. Cox, Properties and failure mechanisms of z-pinned laminates in monotonic and cyclic tension, Comp A. 37 (2006) 1501-1513.

DOI: 10.1016/j.compositesa.2005.11.013

Google Scholar

[18] A.P. Mouritz, Tensile fatigue properties of 3D composites with through-thickness reinforcement, Comp Sci Tech. 68 (2008) 2503-2510.

DOI: 10.1016/j.compscitech.2008.05.003

Google Scholar

[19] A.P. Mouritz, P. Chang, Tension fatigue of fibre-dominated and matrix-dominated laminates reinforced with z-pins, Int J Fatigue. 32 (2010) 650-658.

DOI: 10.1016/j.ijfatigue.2009.09.001

Google Scholar

[20] A.P. Mouritz, Compression properties of z-pinned composite laminates, Comp Sci Tech. 67 (2007) 3110-3120.

DOI: 10.1016/j.compscitech.2007.04.017

Google Scholar

[21] P. Chang, A.P. Mouritz, B.N. Cox, Flexural properties of z-pinned laminates, Comp A. 38 (2007) 224-251.

Google Scholar

[22] A.P. Mouritz, P. Chang, M.D. Isa, Z-pin composites: Aerospace structural design considerations, J Aero Eng. 24 (2011) 425-432.

DOI: 10.1061/(asce)as.1943-5525.0000078

Google Scholar

[23] C.A. Steeves, N.A. Fleck. In-plane properties of composite laminates with through-thickness pin reinforcement, Int. J. Solids Struct. 43 (2006) 3197-3212.

DOI: 10.1016/j.ijsolstr.2005.05.017

Google Scholar

[24] T.K. O'Brien, R. Krueger. Influence of compression and shear on the strength of composite laminates with z-pinned reinforcement, App Comp Mat., 13 (2006) 173-189.

DOI: 10.1007/s10443-005-9005-4

Google Scholar

[25] M. Hojo, T. Ando, M. Tanaka, T. Adachi, S. Ochiai, Y. Endo, Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. Int J Fatigue. 28 (2006) 1154–1165.

DOI: 10.1016/j.ijfatigue.2006.02.004

Google Scholar