An Introduction to Micromechanics

Article Preview

Abstract:

This article provides a brief introduction to micromechanics using linear elastic materials as an example. The fundamental micromechanics concepts including homogenization and dehomogenization, representative volume element (RVE), unit cell, average stress and strain theories, effective stiffness and compliance, Hill-Mandel macrohomogeneity condition. This chapter also describes the detailed derivations of the rules of mixtures, and three full field micromechanics theories including finite element analysis of a representative volume element (RVE analysis), mathematical homogenization theory (MHT), and mechanics of structure genome (MSG). Theoretical connections among the three full field micromechanics theories are clearly shown. Particularly, it is shown that RVE analysis, MHT and MSG are governed by the same set of equations for 3D RVEs with periodic boundary conditions. RVE analysis and MSG can also handle aperiodic or partially periodic materials for which MHT is not applicable. MSG has the unique capability to obtain the complete set of 3D properties and local fields for heterogeneous materials featuring 1D or 2D heterogeneities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-24

Citation:

Online since:

March 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. M. Christensen. Mechanics of Composite Materials. Wiley-Interscience, New York, (1979).

Google Scholar

[2] S. Nemat-Nasser and M. Hori. Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam, (1993).

DOI: 10.1016/b978-0-444-89881-4.50004-9

Google Scholar

[3] G. W. Milton. The Theory of Composites. Cambridge University Press, Cambridge, UK, (2002).

Google Scholar

[4] J. Qu and M. Cherkaoui. Fundamentals of Micromechanics of Solids. Wiley, New Jersey, (2006).

Google Scholar

[5] V. Buryachenko. Micromechanics of Heterogeneous Materials. Springer, New York, (2007).

Google Scholar

[6] S. Li and G. Wang. Introduction to Micromechanics and Nanomechanics. World Scientific, New Jersey, (2008).

Google Scholar

[7] H. J. Bohm. A short introduction to basic aspects of continuum micromechanics. Technical Report ILSB Report/ILSB-Arbeitsbericht 206, (2012).

Google Scholar

[8] R. Hill. The elastic behavior of crystalline aggregate. Proc. Phys. Soc. London, A65: 349-354, (1952).

Google Scholar

[9] Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic behaviour of polycrystals. Journal of Mechanics and Physics of Solids, 10: 343-352, (1962).

DOI: 10.1016/0022-5096(62)90005-4

Google Scholar

[10] S. Torquato. Random heterogeneous materials. Springer New York, (2002).

Google Scholar

[11] J. Aboudi. A continuum theory for fiber-reinforced elastic-visoplastic composites. International Journal of Engineering Science, 20(5): 605 - 621, (1982).

DOI: 10.1016/0020-7225(82)90115-x

Google Scholar

[12] J. Aboudi. Micromechanical analysis of composites by the method of cells. Applied Mechanics Reviews, 42(7): 193 - 221, (1989).

DOI: 10.1115/1.3152428

Google Scholar

[13] M. Paley and J. Aboudi. Micromechanical analysis of composites by the generalized cells model. Mechanics of Materials, 14: 127-139, (1992).

DOI: 10.1016/0167-6636(92)90010-b

Google Scholar

[14] J. Aboudi, M. J. Pindera, and S. M. Arnold. Linear thermoelastic higher-order theory for periodic multiphase materials. Journal of Applied Mechanics, 68: 697-707, (2001).

DOI: 10.1115/1.1381005

Google Scholar

[15] T. O. Williams. A two-dimensional, higher-oder, elasticity-based micromechanics model. International Journal of Solids and Structures, 42: 1009-1038, (2005).

DOI: 10.1016/j.ijsolstr.2004.06.057

Google Scholar

[16] A. Bensoussan, J. Lions, and G. Papanicolaou. Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam, (1978).

Google Scholar

[17] H. Murakami and A. Toledano. A higer-order mixture homogenization of bi-laminated composites. Journal of Applied Mechanics, 57: 388-396, (1990).

DOI: 10.1115/1.2892002

Google Scholar

[18] J. M. Guedes and N. Kikuchi. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element method. Computer Methods in Applied Mechanics and Engineering, 83: 143-198, (1990).

DOI: 10.1016/0045-7825(90)90148-f

Google Scholar

[19] J. C. Michel, H. Moulinec, and P. Suquet. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering, 172: 109-143, (1999).

DOI: 10.1016/s0045-7825(98)00227-8

Google Scholar

[20] C. T. Sun and R. S. Vaidya. Prediction of composite properties from a representative volume element. Composites Science and Technology, 56: 171 - 179, (1996).

DOI: 10.1016/0266-3538(95)00141-7

Google Scholar

[21] H. Berger, S. Kari, U. Gabbert, R. Rodriguez-Ramos, J. Bravo-Castillero, R. Guinovart-Diaz, F. Sabina, and G.A. Maugin. Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties. Smart Materials and Structures, 15: 451-458, (2006).

DOI: 10.1088/0964-1726/15/2/026

Google Scholar

[22] S Ghosh. Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method. Taylor & Francis US, Florida, (2010).

DOI: 10.1201/b10903

Google Scholar

[23] W. Yu. Structure genome: Fill the gap between materials genome and structural analysis. In Proceedings of the 56th Structures, Structural Dynamics and Materials Conference, Kissimmee, Florida, Jan. 5-9 2015. AIAA.

DOI: 10.2514/6.2015-0201

Google Scholar

[24] R. Hill. Elastic properties of reinforced solids: Some theoretical principles. Journal of Mechanics and Physics of Solids, 11: 357-372, (1963).

DOI: 10.1016/0022-5096(63)90036-x

Google Scholar

[25] Z. Hashin. Analysis of composite materials-a survey. Applied Mechanics Review, 50: 481-505, (1983).

Google Scholar

[26] W. Drugan and J. Willis. A micromechanics-based nonlocal constitutive equations and estimates of representative volume element size for elastic composites. Journal of Mechanics and Physics of Solids, 44: 497-524, (1996).

DOI: 10.1016/0022-5096(96)00007-5

Google Scholar

[27] M. Ostoja-Starzewski. Microstructural randomness verse representative volume element in thermomechanics. Journal of Applied Mechanics, 69: 25-30, (2002).

DOI: 10.1115/1.1410366

Google Scholar

[28] B. Liu, X. Feng, and Zhang S. M. The effective Young's modulus of composites beyond the Voigt estimation due to the Poisson effect. Composite Science and Technology, 69: 2198 - 2204, (2009).

DOI: 10.1016/j.compscitech.2009.06.004

Google Scholar

[29] S. J. Hollister and N. Kikuchi. A comparison of homogenization and standard mechanics analyses for periodic porous composites. Computational Mechanics, (1992).

DOI: 10.1007/bf00369853

Google Scholar

[30] Sanchez-Palencia and A. Zaoui. Elements of homogenization for inelastic solid mechanics. In Homogenization Techniques in Composites, pages 194-278. Springer-Verlag, (1987).

Google Scholar

[31] A. Drago and M. -J. Pindera. Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures. Composite science and Technology, 67: 1243-1263, (2007).

DOI: 10.1016/j.compscitech.2006.02.031

Google Scholar

[32] D. H. Pahr and H. J. Bohm. Assessment of mixed uniform boundary conditions for predicting the mechanical behavior of elastic and inelastic discontinuously reinforced composites. CMES, 34: 117-136, (2008).

Google Scholar

[33] K. Terada, M. Hori, T. Kyoya, and N. Kikuchi. Simulation of the multi-scale convergence in computational homogenization approaches. International Journal of Solids and Structures, 37: 2285-2311, (2000).

DOI: 10.1016/s0020-7683(98)00341-2

Google Scholar

[34] N. S. Bakhvalov. Homogenization of partial differential operators with rapidly oscillating coefficients. Soviet Mathematics - Doklady, 16: 351-355, (1975).

Google Scholar

[35] F. Devries and F. Lene. Homogenization at set macroscopic stress: Numerical implementation and application. Recherche Aerospatiale, 1: 34-51, (1987).

Google Scholar

[36] J. Fish, K. Shek, M. Pandheeradi, and M. Shephard. Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Computer Methods in Applied Mechanics and Engineering, 148: 53-73, (1997).

DOI: 10.1016/s0045-7825(97)00030-3

Google Scholar

[37] V. L. Berdichevsky. Variational Principles of Continuum Mechanics, volume 1 and 2. Springer Berlin, (2009).

Google Scholar