[1]
T. Ikeda, Fundamentals of piezoelectriticy, Oxford: University Press, (1996).
Google Scholar
[2]
E. Carrera, Historical Review of Zig-Zag Theories for Multilayered Plates and Shells, Applied Mechanics Review. 56 (2003) 287-308.
DOI: 10.1115/1.1557614
Google Scholar
[3]
E. Carrera, S. Brischetto, Piezoelectric Shell Theories with a priori continuous transverse electromechanical variables, Journal of Mechanics of Materials and Structures. 2(2) (2007) 377-399.
DOI: 10.2140/jomms.2007.2.377
Google Scholar
[4]
E. Carrera, C. Fagiano, Mixed piezoelectric plate elements with continuous transverse electric displacements, Journal of Mechanics of Materials and Structures. 2(3) (2007) 421-438.
DOI: 10.2140/jomms.2007.2.421
Google Scholar
[5]
R.D. Mindlin, Forced tickness-shear and flexural vibrations of piezoelectric crystal plates, Journal of Applied Physics. 22(1) (1952) 83-88.
DOI: 10.1063/1.1701983
Google Scholar
[6]
H.F. Tiersten, R.D. Mindlin, Forced vibrations of piezoelectric crystal plates, Quarterly of Applied Mathematics. 20(2) (1962) 107-119.
DOI: 10.1090/qam/99964
Google Scholar
[7]
E.P. EerNisse, Variational method for electroelastic vibration analysis, IEEE Trans. Ultrasonic. SU. 14(4) (1967) 153-160.
DOI: 10.1109/t-su.1967.29431
Google Scholar
[8]
H.F. Tiersten, Linear piezoelectric plate vibrations, New York: Plenum, (1969).
Google Scholar
[9]
H. Allik, T.J.R. Hughes, Finite element method for piezoelectric vibration, International Journal for Numerical Methods in Engineering. 14(4) (1970) 153-160.
Google Scholar
[10]
R.D. Mindlin, Equation of high frequency vibration of thermopiezoelectric crystal plates, International Journal of Solids and Structures. 10 (1974) 625-637.
DOI: 10.1016/0020-7683(74)90047-x
Google Scholar
[11]
M.C. Dokmeci, Theory of vibration of coated, thermopiezoelectric laminae, Journal of Mathematical Physics. 19(1) (1978) 109-126.
Google Scholar
[12]
M. Cinefra, S. Valvano, E. Carrera, Heat conduction and Thermal Stress Analysis of laminated composites by a variable kinematic MITC9 shell element, Curved and Layered Structures. 2 (2015) 301-320.
DOI: 10.1515/cls-2015-0017
Google Scholar
[13]
M. Cinefra, E. Carrera, S. Valvano, Variable kinematic shell elements for the analysis of electromechanical problems, SMART 2013 - Modelling and Analysis of Smart Structures, special issue of Mechanics of Advanced Materials and Structures. 22 (2015).
DOI: 10.1080/15376494.2014.908042
Google Scholar
[14]
M. Cinefra, S. Valvano, E. Carrera, A Layer-Wise MITC9 Finite Element for the Free-Vibration Analysis of Plates with Piezo-Patches, International Journal of Smart and Nano Materials. 6(2) (2015) 85-104.
DOI: 10.1080/19475411.2015.1037377
Google Scholar
[15]
E. Carrera, P. Nali, Multilayered plate elements for the analysis of multifield problems, Finite Elements in Analysis and Design. 46 (2010) 732-742.
DOI: 10.1016/j.finel.2010.04.001
Google Scholar
[16]
A. Robaldo, E. Carrera, A. Benjeddou, A Unified Formulation for finite element analysis of piezoelectric plates, Computers & Structures. 84 (2006) 1494-1505.
DOI: 10.1016/j.compstruc.2006.01.029
Google Scholar
[17]
E. Carrera, A. Robaldo, Hierarchic finite elements based on the Carrera Unified Formulation for the static analysis of shear actuated multilayered piezoelectric plates, Multidiscipline Modeling in Materials and Structures. 6 (2010) 45-77.
DOI: 10.1108/15736101011055266
Google Scholar
[18]
E. Carrera, M. Boscolo, A. Robaldo, Hierarchic multilayered plate elements for coupled multifield problems of piezoelectric adaptive structures: Formulation and numerical assessment, Archives of Computational Methods in Engineering. 14 (2007).
DOI: 10.1007/s11831-007-9012-8
Google Scholar
[19]
E. Carrera, P. Nali, Classical and mixed finite elements for the analysis of multifield problems and smart layered plates, Acta Mechanica Solida Sinica. 23 (2010) 115-121.
Google Scholar
[20]
E. Carrera, M. Boscolo, Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates, International Journal for Numerical Methods in Engineering. 70 (2007) 1135-1181.
DOI: 10.1002/nme.1901
Google Scholar
[21]
E. Carrera, A. Buttner, P. Nali, Mixed Elements for the Analysis of Anisotropic Multilayered Piezoelectric Plates, Journal of Intelligent Material Systems and Structures. 21 (2010) 701-717.
DOI: 10.1177/1045389x10364864
Google Scholar
[22]
E. Carrera, P. Nali, Mixed piezoelectric plate elements with direct evaluation of transverse electric displacement, International Journal for Numerical Methods in Engineering. 80(4) (2009) 403- 424.
DOI: 10.1002/nme.2641
Google Scholar
[23]
A. Robaldo, E. Carrera, A. Benjeddou, Unified formulation for finite element thermoleastic analysis of multilayered anisotropic composite plates, Journal of Thermal Stresses. 28 (2005) 1031- 1064.
DOI: 10.1080/01495730590964963
Google Scholar
[24]
P. Nali, E. Carrera, A. Calvi, Advanced fully coupled thermo-mechanical plate elements for multilayered structures subjected to mechanical and thermal loading, International Journal for Numerical Methods in Engineering. 85 (2011) 896-919.
DOI: 10.1002/nme.3006
Google Scholar
[25]
E. Carrera, A. Robaldo, Mixed finite elements for thermoelastic analysis of multilayered anisotropic plates, Journal of Thermal Stresses. 30 (2007) 165-194.
DOI: 10.1080/01495730600897385
Google Scholar
[26]
E. Carrera, M. Digifico, P. Nali, S. Brischetto, Refined multilayered plate elements for coupled magneto-electro-elastic analysis, Multidiscipline Modeling in Materials and Structures. 5 (2009) 119-138.
DOI: 10.1163/157361109787959859
Google Scholar
[27]
E. Carrera, S. Brischetto, C. Fagiano, P. Nali, Mixed multilayered plate elements for coupled magneto-electro-elastic problems, Multidiscipline Modeling in Materials and Structures. 5 (2009) 251-256.
DOI: 10.1163/157361109789017050
Google Scholar
[28]
K.J. Bathe, P.S. Lee, J.F. Hiller, Towards improving the MITC9 shell element, Computers and Structures. 81 (2003) 477-489.
DOI: 10.1016/s0045-7949(02)00483-2
Google Scholar
[29]
C. Chinosi, L. Della Croce, Mixed-interpolated elements for thin shell, Communications in Numerical Methods in Engineering. 14 (1998) 1155-1170.
DOI: 10.1002/(sici)1099-0887(199812)14:12<1155::aid-cnm216>3.0.co;2-9
Google Scholar
[30]
N.C. Huang, Membrane locking and assumed strain shell elements, Compunters and Structures. 27(5) (1987) 671-677.
DOI: 10.1016/0045-7949(87)90083-6
Google Scholar
[31]
E. Carrera, A class of two-dimensional theories for anisotropic multilayered plates analysis, Accademia delle Scienze di Torino, Memorie Scienze Fisiche. 19-20 (1995) 1-39.
DOI: 10.5962/bhl.title.27479
Google Scholar
[32]
E. Carrera, C0 z requirements - models for the two dimensional analysis of multilayered structures, Composite Structures. 37(3-4) (1997) 373-383.
DOI: 10.1016/s0263-8223(98)80005-6
Google Scholar
[33]
P.M. Naghdi, The theory of shells and plates, Handbuch der Physic. 4 (1972) 425-640.
Google Scholar
[34]
W.T. Koiter, On the foundations of the linear theory of thin elastic shell, Proc. Kon. Nederl. Akad. Wetensch. 73 (1970) 169-195.
Google Scholar
[35]
H. Murakami, Laminated composite plate theory with improved in-plane responses, Journal of Applied Mechanics. 53 (1986) 661-666.
DOI: 10.1115/1.3171828
Google Scholar
[36]
N.N. Rogacheva, The theory of piezoelectric Shells and Plates, Boca Raton, Florida (USA): CRC Press, (1994).
Google Scholar
[37]
D. Chapelle, K.J. Bathe, The finite element analysis of shells. -Fundamentals, Berlin: Springer, (2003).
Google Scholar
[38]
K. -J. Bathe, E. Dvorkin, A formulation of general shell elements - the use of mixed interpolation of tensorial components, International Journal for Numerical Methods in Engineering. 22 (1986) 697-722.
DOI: 10.1002/nme.1620220312
Google Scholar
[39]
M.L. Bucalem, K. -J. Bathe, Higher-order MITC general shell elements, International Journal for Numerical Methods in Engineering. 36 (1993) 3729-3754.
DOI: 10.1002/nme.1620362109
Google Scholar
[40]
M. Cinefra, E. Carrera, Shell finite elements with different through-the-thickness kinematics for the linear analysis of cylindrical multilayered structures, International Journal for Numerical Methods in Engineering. 93 (2013) 160-182.
DOI: 10.1002/nme.4377
Google Scholar
[41]
J.N. Reddy, Mechanics of Laminated Composite Plates and Shells, Theory and Analysis CRC Press, (1997).
Google Scholar
[42]
V. Tungikar, B.K.M. Rao, Three dimensional exact solution of thermal stresses in rectangular composite laminates, Composite Structures. 27(4) (1994) 419-430.
DOI: 10.1016/0263-8223(94)90268-2
Google Scholar
[43]
S. Brischetto, E. Carrera, Heat conduction and thermal analysis in multilayered plates and shells, Mechanics Research Communications. 38 (2011) 449-455.
DOI: 10.1016/j.mechrescom.2011.05.016
Google Scholar
[44]
A.N.S. Institute, Ieee standard on piezoelectricity, Technical Report NASA CR 4665, IEEE, March (1987).
Google Scholar
[45]
D. Ballhause, M. D'Ottavio, B. Kroplin, E. Carrera, A unified formulation to assess multilayered theories for piezoelectric plates, Computer & Structures. 83 (2005) 1217-1235.
DOI: 10.1016/j.compstruc.2004.09.015
Google Scholar
[46]
E. Carrera, S. Brischetto, P. Nali, Plates and Shells for Smart Structures Classical and Advanced Theories for Modeling and Analysis, New Delhi: Wiley, (2011).
DOI: 10.1002/9781119950004
Google Scholar
[47]
M. Cinefra, S. Valvano, Temperature profile influence on layered plates response considering classical and advanced theories, Mechanics of Advanced Materials and Structures, in press, doi: 10. 1080/15376494. 2015. 1070304.
Google Scholar
[48]
K. Bhaskar, T.K. Varadan, J.S.M. Ali, Thermoelastic solutions for orthotropic and anisotropic composite laminates, Composites: Part B. 27(B) (1996) 415-420.
DOI: 10.1016/1359-8368(96)00005-4
Google Scholar
[49]
E. Carrera, , AIAA Journal, 40(9) (2002) 1885-1896.
Google Scholar