Design of Integrated Open Loop Resonator Bandpass Filter Antenna for 2.4GHz Applications

Article Preview

Abstract:

This paper presented the design of integrated filter antenna for 2.4GHz microwave applications. Open loop resonator bandpass filter is designed to increase the bandwidth of the antenna by producing the range of frequencies that can be accepted by the antenna structure. Direct connection between the filter structure and antenna may cause impedance mismatch and deteriorates the performance of both antenna and filter. Thus, by integrating both filter and antenna into a single module, the overall performance can be improved and increase the efficiency of the system with improved bandwidth. The design used FR4 with dielectric constant of εr = 4.7 with substrate thickness of 1.6mm. It is shown that the simulation result for the proposed integrated filter antenna produce return loss, S11=-20.009dB, gain of radiation pattern is 3.36dB and an increase of bandwidth to approximately 3.74% compare to the single structure antenna.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. –J. Wu, Y. –Z. Yen, S. –L. Zuo, Z. –Y. Zhang, J. –J. Xie, A new compact filter-antenna for modern wireless communication systems, IEEE Antennas and Wireless Propagation Letters, 10 (2011) 1131 – 1134.

DOI: 10.1109/lawp.2011.2171469

Google Scholar

[2] M. Troubat, S. Bila, M. Thévenot, D. Baillargeat, T. Monédière, S. Verdeyme, B. Jecko, Mutula synthesis of combined microwave circuits applied to the design of a filter-antenna subsystem, IEEE Trans. Microw. Theory Tech., 55, 6 (2007) 1182-1189.

DOI: 10.1109/tmtt.2007.897719

Google Scholar

[3] J. H. Lee, N. Kidera, S. Pinel, J. Laskar, M. M. Tentzeris, Fully integrated passive front-end solutions for a V-band LTCC wireless system, IEEE Antennas Wireless Propaf. Lett., 6 (2007) 285-288.

DOI: 10.1109/lawp.2007.891964

Google Scholar

[4] O. A. Nova, J. C. Bohórquez, N. M. Peña, G. E. Bridges, L. Shafai, C. Shafai, Filter-antenna module using substrate integrated waveguide cavities, IEEE Antennas Wireless Propag. Lett., 10 (2011) 59-62.

DOI: 10.1109/lawp.2011.2107724

Google Scholar

[5] J. H. Zuo, X. W. Chen, G. R. Han, L. Li, W. M. Zhang, An integrated approach to RF antenna-filter co-design, IEEE Antennas Wireless Propag. Lett., 8 (2011) 381-384.

DOI: 10.1109/lawp.2009.2012732

Google Scholar

[6] C. K. Lin, S. J. Chung, A compact filtering microstrip antenna with quasi-elliptic broadside antenna gain response, IEEE Antennas Woreless Propag., Lett. 10 (2011) 381-384.

DOI: 10.1109/lawp.2011.2147750

Google Scholar

[7] C. K. Lin, S. J. Chung, A compact edge-fed filtering microstrip antenna with 0. 2 dB equal-ripple response, Proc. 39th Eur. Microw. Conf. (2009) 378-380.

DOI: 10.23919/eumc.2009.5296108

Google Scholar

[8] Information on https: /en. wikipedia. org/wiki/Patch_antenna.

Google Scholar

[9] K. F Lee, W. Chen , Advances in Microstrip and Printed Antennas, Wiley, June (1997).

Google Scholar

[10] W. –J. Wu, Y. –Z, Yin, S. –L. Zuo, Z. –Y. Zhang, J. –J. Xie, A new compact filter-antenna for modern wireless communication systems, IEEE Antennas and Wireless Propag. Lett., 10 (2011) 1131-1134.

DOI: 10.1109/lawp.2011.2171469

Google Scholar