Multi-Cycle Photodegradation of Anionic and Cationic Dyes by New TiO2/DSAT Immobilization System

Article Preview

Abstract:

In this work, titanium dioxide (TiO2) photocatalyst was generally immobilized onto glass plate support material by employing double sided adhesive tape (DSAT) as a thin layer binder. The photocatalytic performance of this new non-additive immobilization system was observed under the degradation of two different charges of dyes namely anionic reactive red 4 (RR4) and cationic methylene blue (MB) dyes. Photocatalytic degradation of RR4 and MB dyes under immobilized TiO2/DSAT were compared with TiO2 in suspension mode respectively. Immobilized TiO2/DSAT was observed to have up to 30 cycles of reusability thanks to DSAT that is able to provide a very strong intact between the glass plate and TiO2 layers. In fact, a better photodegradation activity was observed by number of photocatalysis cycles due to increasing pores formation on TiO2 surface as observed by Scanning Electron Microscopy (SEM) analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

353-358

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Razak, M.A. Nawi, K. Haitham, Fabrication, characterization and application of a reusable immobilized TiO2–PANI photocatalyst plate for the removal of reactive red 4 dye, Appl. Surf. Sci. 319 (2014) 90–98.

DOI: 10.1016/j.apsusc.2014.07.049

Google Scholar

[2] H. Dzinun, M.H.D. Othman, A.F. Ismail, M.H. Puteh, M.A. Rahman, J. Jaafar, Photocatalytic degradation of nonylphenol by immobilized TiO2 in dual layer hollow fibre membranes, Chem. Eng. J. 269 (2015) 255–261.

DOI: 10.1016/j.cej.2015.01.114

Google Scholar

[3] C.M. Malengreaux, M. Géraldine, L. Léonard, S.L. Pirard, I. Cimieri, S.D. Lambert, J.R. Bartlett, B. Heinrichs, How to modify the photocatalytic activity of TiO2 thin films through their roughness by using additives- A relation between kinetics, morphology and synthesis, Chem. Eng. J. 243 (2014).

DOI: 10.1016/j.cej.2013.11.031

Google Scholar

[4] A. Bazmar, S. Mohammadneja, Effect of additives and precursor chemical structure on crystalline shape and optical properties of TiO2, Optik, 125 (2014) 5733–5737.

DOI: 10.1016/j.ijleo.2014.06.027

Google Scholar

[5] G. Syrrokostas, G. Leftheriotis, P. Yianoulis, Effect of acidic additives on the structure and performance of TiO2 films prepared by a commercial nanopowder for dye-sensitized solar cells, Renew. Energ. 72 (2014) 164–173.

DOI: 10.1016/j.renene.2014.07.009

Google Scholar

[6] A.M. Ruiz, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments, Sens. Actuators, B: Chem. 108 (2005) 34–40.

DOI: 10.1016/j.snb.2004.09.045

Google Scholar

[7] S.H. Kim, S.Y. Kwak, T. Suzuki, Photocatalytic degradation of flexible PVC/ TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use PVC, Polymer, 47 (2006) 3005–3016.

DOI: 10.1016/j.polymer.2006.03.015

Google Scholar

[8] W. Wang, M. Gu, Y. Jin, Effect of PVP on the photocatalytic behavior of TiO2 under sunlight, Mater. Lett. 57 (2003) 3276–3281.

DOI: 10.1016/s0167-577x(03)00047-8

Google Scholar

[9] H. Yang, J. Zhang, Y. Song, S. Xu, L. Jiang, Y. Dan, Visible light photo-catalytic activity of C-PVA/TiO2 composites for degrading rhodamine B, Appl. Surf. Sci. 324 (2015) 645–651.

DOI: 10.1016/j.apsusc.2014.11.002

Google Scholar

[10] Y. Zhanga, C. Han, G. Zhang, D. Dionysiou, M.N. Nadagouda, PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine, Chem. Eng. J. 268 (2015) 170–179.

DOI: 10.1016/j.cej.2015.01.006

Google Scholar

[11] E.M. Maghraby, Y. Nakamura, S. Rengakuji, Composite TiO2–SnO2 nanostructured films prepared by spin-coating with high photocatalytic performance, Catal. Commun. 9 (2008) 2357–2360.

DOI: 10.1016/j.catcom.2008.05.037

Google Scholar

[12] L. Andronic, A. Enesca, C. Vladuta, A. Duta, Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes, Chem. Eng. J. 152 (2009) 64–71.

DOI: 10.1016/j.cej.2009.03.031

Google Scholar

[13] C.S. Chou, F.C. Chou, J.Y. Kang, Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells, Powder Technol. 215–216 (2012) 38–45.

DOI: 10.1016/j.powtec.2011.09.003

Google Scholar

[14] S. Kannappan, K. Palanisamy, J. Tatsugi, P.K. Shin, S. Ochiai, Fabrication and characterizations of PCDTBT: PC71BM bulk heterojunction solar cell using air brush coating method, J. Mater. Sci. 48 (2013) 2308–2317.

DOI: 10.1007/s10853-012-7010-1

Google Scholar

[15] E. Çelik, Preparation and characterization of Al2O3– TiO2 powders by chemical synthesis for plasma spray coatings, J. Mater. Process. Technol. 128 (2002) 205–209.

DOI: 10.1016/s0924-0136(02)00452-1

Google Scholar

[16] A. Zeichner, S. Abramovich-Bar, T. Tamiri, J. Almog, A feasibility study on the use of double-sided adhesive coated stubs for sampling of explosive traces from hands, Forensic Sci. Int. 184 (2009) 42–46.

DOI: 10.1016/j.forsciint.2008.11.012

Google Scholar

[17] J. Li, C. Mi, J. Li, Y. Xu, Z. Jia, M. Li, The removal of MO molecules from aqueous solution by the combination of ultrasound/adsorption/photocatalysis, Ultrason. Sonochem. 15 (2008) 949–954.

DOI: 10.1016/j.ultsonch.2008.03.002

Google Scholar

[18] M.A. Nawi, Salmiah Md. Zain, Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution, Appl. Surf. Sci. 258 (2012) 6148–6157.

DOI: 10.1016/j.apsusc.2012.03.024

Google Scholar