[1]
S. Razak, M.A. Nawi, K. Haitham, Fabrication, characterization and application of a reusable immobilized TiO2–PANI photocatalyst plate for the removal of reactive red 4 dye, Appl. Surf. Sci. 319 (2014) 90–98.
DOI: 10.1016/j.apsusc.2014.07.049
Google Scholar
[2]
H. Dzinun, M.H.D. Othman, A.F. Ismail, M.H. Puteh, M.A. Rahman, J. Jaafar, Photocatalytic degradation of nonylphenol by immobilized TiO2 in dual layer hollow fibre membranes, Chem. Eng. J. 269 (2015) 255–261.
DOI: 10.1016/j.cej.2015.01.114
Google Scholar
[3]
C.M. Malengreaux, M. Géraldine, L. Léonard, S.L. Pirard, I. Cimieri, S.D. Lambert, J.R. Bartlett, B. Heinrichs, How to modify the photocatalytic activity of TiO2 thin films through their roughness by using additives- A relation between kinetics, morphology and synthesis, Chem. Eng. J. 243 (2014).
DOI: 10.1016/j.cej.2013.11.031
Google Scholar
[4]
A. Bazmar, S. Mohammadneja, Effect of additives and precursor chemical structure on crystalline shape and optical properties of TiO2, Optik, 125 (2014) 5733–5737.
DOI: 10.1016/j.ijleo.2014.06.027
Google Scholar
[5]
G. Syrrokostas, G. Leftheriotis, P. Yianoulis, Effect of acidic additives on the structure and performance of TiO2 films prepared by a commercial nanopowder for dye-sensitized solar cells, Renew. Energ. 72 (2014) 164–173.
DOI: 10.1016/j.renene.2014.07.009
Google Scholar
[6]
A.M. Ruiz, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments, Sens. Actuators, B: Chem. 108 (2005) 34–40.
DOI: 10.1016/j.snb.2004.09.045
Google Scholar
[7]
S.H. Kim, S.Y. Kwak, T. Suzuki, Photocatalytic degradation of flexible PVC/ TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use PVC, Polymer, 47 (2006) 3005–3016.
DOI: 10.1016/j.polymer.2006.03.015
Google Scholar
[8]
W. Wang, M. Gu, Y. Jin, Effect of PVP on the photocatalytic behavior of TiO2 under sunlight, Mater. Lett. 57 (2003) 3276–3281.
DOI: 10.1016/s0167-577x(03)00047-8
Google Scholar
[9]
H. Yang, J. Zhang, Y. Song, S. Xu, L. Jiang, Y. Dan, Visible light photo-catalytic activity of C-PVA/TiO2 composites for degrading rhodamine B, Appl. Surf. Sci. 324 (2015) 645–651.
DOI: 10.1016/j.apsusc.2014.11.002
Google Scholar
[10]
Y. Zhanga, C. Han, G. Zhang, D. Dionysiou, M.N. Nadagouda, PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine, Chem. Eng. J. 268 (2015) 170–179.
DOI: 10.1016/j.cej.2015.01.006
Google Scholar
[11]
E.M. Maghraby, Y. Nakamura, S. Rengakuji, Composite TiO2–SnO2 nanostructured films prepared by spin-coating with high photocatalytic performance, Catal. Commun. 9 (2008) 2357–2360.
DOI: 10.1016/j.catcom.2008.05.037
Google Scholar
[12]
L. Andronic, A. Enesca, C. Vladuta, A. Duta, Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes, Chem. Eng. J. 152 (2009) 64–71.
DOI: 10.1016/j.cej.2009.03.031
Google Scholar
[13]
C.S. Chou, F.C. Chou, J.Y. Kang, Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells, Powder Technol. 215–216 (2012) 38–45.
DOI: 10.1016/j.powtec.2011.09.003
Google Scholar
[14]
S. Kannappan, K. Palanisamy, J. Tatsugi, P.K. Shin, S. Ochiai, Fabrication and characterizations of PCDTBT: PC71BM bulk heterojunction solar cell using air brush coating method, J. Mater. Sci. 48 (2013) 2308–2317.
DOI: 10.1007/s10853-012-7010-1
Google Scholar
[15]
E. Çelik, Preparation and characterization of Al2O3– TiO2 powders by chemical synthesis for plasma spray coatings, J. Mater. Process. Technol. 128 (2002) 205–209.
DOI: 10.1016/s0924-0136(02)00452-1
Google Scholar
[16]
A. Zeichner, S. Abramovich-Bar, T. Tamiri, J. Almog, A feasibility study on the use of double-sided adhesive coated stubs for sampling of explosive traces from hands, Forensic Sci. Int. 184 (2009) 42–46.
DOI: 10.1016/j.forsciint.2008.11.012
Google Scholar
[17]
J. Li, C. Mi, J. Li, Y. Xu, Z. Jia, M. Li, The removal of MO molecules from aqueous solution by the combination of ultrasound/adsorption/photocatalysis, Ultrason. Sonochem. 15 (2008) 949–954.
DOI: 10.1016/j.ultsonch.2008.03.002
Google Scholar
[18]
M.A. Nawi, Salmiah Md. Zain, Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution, Appl. Surf. Sci. 258 (2012) 6148–6157.
DOI: 10.1016/j.apsusc.2012.03.024
Google Scholar