[1]
J.W. Clay, World Agriculture and the Environment: a Commodity-by commodity, Guide to Impacts and Practices. Island Press, Washington D.C. (2004), London.
Google Scholar
[2]
J.C. Garcia, J.I. Simionato, A. Eugenio, C. da Silva, J. Nozaki, N.E. de Souza, Solar photocatalytic degradation of real textile effluents by associated titanium dioxide and hydrogen peroxide. Sol. Energy, 83 (2009) 316-322.
DOI: 10.1016/j.solener.2008.08.004
Google Scholar
[3]
M. Pera-Titus, V. Garcia-Molina, M.A. Banos, J. Gimenez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B 47 (2004) 219–256.
DOI: 10.1016/j.apcatb.2003.09.010
Google Scholar
[4]
K. Ikehata, M.G. El-Din, Aqueous Pesticide Degradation by Ozonation and Ozone-Based Advanced Oxidation Processes: A Review (Part I), Ozone-Sci. Eng. 27 (2005) 83-114.
DOI: 10.1080/01919510590925220
Google Scholar
[5]
K. Ikehata, M.G. El-Din, Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review, J. Environ. Eng. Sci. 5 (2006) 81-135.
DOI: 10.1139/s05-046
Google Scholar
[6]
D. Chatterjee and S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutans, J. Photochem. Photobiol. C: Photochem. Rev. 6 (2005) 186-205.
Google Scholar
[7]
M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res. 44 (2010) 2997–3027.
DOI: 10.1016/j.watres.2010.02.039
Google Scholar
[8]
M.A. Nawi, Ali H. Jawad, S. Sabar, W.S. Wan Ngah. Immobilized bilayer TiO2/chitosan system for the removal of phenol under irradiation by a 45 watt compact fluorescent lamp. Desalination 280 (2011) 288–296.
DOI: 10.1016/j.desal.2011.07.013
Google Scholar
[9]
P.V. Kamat and M.A. Fox, Photosensitization of TiO2 colloids by Erythrosin B in acetonitrile, Chem. Phys. Lett. 102(4) (1983) 379-384.
DOI: 10.1016/0009-2614(83)87060-2
Google Scholar
[10]
J. Moser, M. Gratzel, Photosensitized electron injection in colloidal semiconductors, J. Am. Chem. Soc. 160(22) (1984) 6557-6564.
DOI: 10.1021/ja00334a017
Google Scholar
[11]
R.W. Fessenden and P.V. Kamat, Photosensitized charge injection into TiO2 particles as studied by microwave absorption, Chem. Phys. Lett. 123(3) (1986) 233-238.
DOI: 10.1016/0009-2614(86)80020-3
Google Scholar
[12]
Y. Liang, A.M. Ponte Goncalves and D.K. Negus, Picosecond fluorescence lifetime measurements on dyes adsorbed at semiconductor and insulator surfaces, J. Phys. Chem. 87(1) (1983) 1-4.
DOI: 10.1021/j100224a001
Google Scholar
[13]
R.L. Crackel and W.S. Struve, Non-radiative excitation decay of cresyl violet on TiO2: variation with dye-surface separation, Chem. Phys. Lett. 120 (1985) 473-476.
DOI: 10.1016/0009-2614(85)85643-8
Google Scholar
[14]
B. Patrick and P.V. Kamat, Photoelectrochemistry in semiconductor particulate systems. 17. Photosensitization of large-bandgap semiconductors: charge injection from triplet excited thionine into zinc oxide colloids, J. Phys. Chem. 96 (1992).
DOI: 10.1021/j100182a072
Google Scholar
[15]
P.V. Kamat, J.P. Chauvet and R.W. Fessenden, Photoelectrochemistry in particulate systems. 4. Photosensitization of a titanium dioxide semiconductor with a chlorophyll analog, J. Phys. Chem. 90 (1986) 1389 1394.
DOI: 10.1021/j100398a035
Google Scholar
[16]
P.V. Kamat, Photoelectrochemistry in particulate systems. 9. Photosensitized reduction in a colloidal titania system using anthracene-9-carboxylate as the sensitizer, J. Phys. Chem. 93 (1989) 859-864.
DOI: 10.1021/j100339a062
Google Scholar
[17]
K. Kalyanasundaram, M. Gratzel, N. Vlachopoulos, V. Krishnan and A. Monnier, Sensitization of titanium dioxide in the visible light region using zinc porphyrins, J. Phys. Chem. 91 (1987) 2342-2347.
DOI: 10.1021/j100293a027
Google Scholar
[18]
F.R.F. Fan, A.J. Bard, Spectral sensitization of the heterogeneous photocatalytic oxidation of hydroquinone in aqueous solutions at phthalocyanine-coated titanium dioxide powders, J. Am. Chem. Soc. 101 (1979) 6139-6140.
DOI: 10.1021/ja00514a056
Google Scholar
[19]
K. Kemnitz, K. Yoshihara and T.J. Tani, Short and excitation-independent fluorescence lifetimes of J-aggregates adsorbed on silver(I) bromide and silica, J. Phys. Chem. 94 (1990) 3099-3104.
DOI: 10.1021/j100370a065
Google Scholar
[20]
G.S. Mital, T. Manoj. A review of TiO2 nanoparticles. Chinese Sci. Bull. (2011) 1639-1657.
Google Scholar