High Performance 785 nm Wavelength Super-Luminescent Diodes

Article Preview

Abstract:

High-performance 785 nm wavelength super-luminescent diodes (SLDs) with ring cavity were fabricated. The maximum output power of 100 mW was obtained in continuous wave (CW) mode under room temperature. The full width at half maximum (FWHM) of the emission spectrum was 24 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

594-597

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bohm K, Marten P, Petermann K, et al. Low drift fibre gyro using a super-luminescent diode. Electron Lett, 1981, 17: 352-353.

DOI: 10.1049/el:19810248

Google Scholar

[2] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography. Science, 1991, 254: 1178-1181.

Google Scholar

[3] Takada K, Yokohama I, Chida K, et al. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl Opt, 1987, 26: 1603-1606.

DOI: 10.1364/ao.26.001603

Google Scholar

[4] Sampson D D, Holloway W T. 100 mW spectrally uniform broadband ASE source for spectrum-sliced WDM systems. Electron Lett, 1994, 30(19): 1611-1612.

DOI: 10.1049/el:19941059

Google Scholar

[5] Semenov T, Batovrin V K, Garmash I A, et al. (GaAl)As SQW super-luminescent diodes with extremely low coherence length. Electron Lett, 1995, 31(4): 314-315.

DOI: 10.1049/el:19950214

Google Scholar

[6] Takayama T, Imafuji O, Kouchi Y, et al. 100 mW high power angled stripe superluminescent diodes with a new real refractive-index-guides self-aligned structure. IEEE J Quant Electron, 1996, 32(11): 1981-(1987).

DOI: 10.1109/3.541685

Google Scholar

[7] Lin C F, Lee B L. Extremely broadband AlGaAs/GaAs super-luminescent diodes. Appl Phys Lett, 1997, 71(12): 1598-1600.

DOI: 10.1063/1.119844

Google Scholar

[8] Middlemast I, Sarma J, Yunus S. High-power tapered super-luminescent diodes using novel etched deflectors. Electron Lett, 1997, 33: 903-904.

DOI: 10.1049/el:19970554

Google Scholar

[9] Gen-ei K, Tanioka A, Suhara H, et al. High coupled power 1. 3 μm edge-emitting light-emitting diode with a rear window and an inte-grated absorber. Appl Phys Lett, 1988, 53(13): 1138-1140.

DOI: 10.1063/1.100037

Google Scholar

[10] Norman S, Kwong K, Bar-Chaim N. High-power 1. 3 μm super-luminescent diode. Appl Phys Lett, 1989, 54(4): 298-300.

DOI: 10.1063/1.100992

Google Scholar

[11] Nagai H, Noguchi Y, Sudo S. High-power, high-efficiency 1. 3 μm super-luminescent diode with a buried bent absorbing guide structure. Appl Phys Lett, 1989, 54(18): 1719-1721.

DOI: 10.1063/1.101292

Google Scholar

[12] Mikami O, Yasaka H, Noguchi Y. Broader spectral width InGaAsP stacked active layer super-luminescent diodes. Appl Phys Lett, 1990, 56(11): 987-989.

DOI: 10.1063/1.102571

Google Scholar

[13] Kashima Y, Matoba A, Takano H. Performance and reliability of InGaAsP super-luminescent diode. IEEE J Lightwave Technol, 1992, 10(11): 1644-1649.

DOI: 10.1109/50.184903

Google Scholar

[14] Holtmann C, Besse P A, Melchior H. High power super-luminescent diodes for 1. 3 μm wavelengths. Electron Lett, 1996, 32: 1705-1706.

DOI: 10.1049/el:19961117

Google Scholar

[15] Wu B R, Fuh C, Laih L W, et al. Extremely broadband InGaAsP/InP super-luminescent diodes. Electron Lett, 2000, 36: 2093-(2095).

DOI: 10.1049/el:20001440

Google Scholar

[16] Chen T R, Zhuang Y H, Xu Y J, et al. 1. 5 μm InGaAsP/InP buried crescent super-luminescent diode on a p-InP substrate. Appl Phys Lett, 1990, 56(25): 2502-2503.

DOI: 10.1063/1.102871

Google Scholar