Identification of Assembly System Configuration for Cyber-Physical Assembly System Planning

Article Preview

Abstract:

To respond to challenges created by an increase of product variants, multi-variant lines are used as today’s assembly systems. In these multi-variant lines different product variants with diverse lot sizes can be efficiently assembled. These assembly systems are characterized by modular structures that allow assembly system adaptation by reconfiguration.The variety of parameters to be considered from the product’s perspective and the correct allocation of different assembly modules increases the complexity when planning these systems. This complexity makes it difficult to successfully plan and implement production processes. Therefore, digital planning tools and models have to be used to schedule new product variants and to verify that the assembly is possible, given by the modules in the assembly line.Due to its ability to reconfigure, the actual assembly system is adaptable to different product variants. But these modifications are performed by the operator on the shop floor and are often neither properly documented nor communicated to the assembly planer. Thus, the configuration status in reality and the virtual model differ from each other. Using the outdated model for planning without taking into account the changes can result in an unrealizable assembly plan.To overcome this problem, the presented paper introduces a method and technical system to identify the actual assembly system configuration before the assembly planning is done. Due to the subsequent update of the virtual model depending on the actual configuration, the assembly planner is supported with the latest version of the assembly system configuration. Furthermore, the assembly planning process is improved, because possible failures are detected in advance in the virtual planning environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-32

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Koren, The Global Manufacturing Revolution: Product-Process-Business Integration and Reconfigurable Systems, Wiley Series in Systems Engineering and Management, (2010).

DOI: 10.1002/9780470618813.scard

Google Scholar

[2] S.J. Hu, Assembly system design and operations for product variety, CIRP Annals - Manufacturing Technology, Vol. 60, 2011, p.715–733.

Google Scholar

[3] H. ElMaraghy, A. Azab, G. Schuh and C. Pulz, Managing variations in products, processes and manufacturing systems, CIRP Annals - Manufacturing Technology, Vol. 58, 2009, p.441–446.

DOI: 10.1016/j.cirp.2009.04.001

Google Scholar

[4] R. Müller, M. Vette, L. Hörauf, C. Speicher, Methodology for planning and operating cyber-physical assembly systems, in: C.F. Oduoza, Flexible Automation and Intelligent Manufacturing 2015, The Choir Press, Volume 2, 2015, pp.312-319.

Google Scholar

[5] D. Whitney, Mechanical Assemblies: Their Design, Manufacture and Role in Product Development, Oxford University Press, (2004).

Google Scholar

[6] N. Thomopoulos, Assembly Line Planning and Control, Springer, (2014).

Google Scholar

[7] R. Müller, M. Vette, L. Hörauf, C. Speicher, Mechatronische Module als Befähiger für einen durchgängigen Informationsfluss bei der Planung und dem Betrieb von Cyber-Physischen Montagesystemen, in: T. Bertram, B. Corves, K. Janschek, Tagungsband Mechatronik 2015, Dortmund, 2015, pp.173-178.

Google Scholar

[8] S. -J. Kluge, Methodik zur fähigkeitsbasierten Planung modularer Montagesysteme, Dissertation, Stuttgart University, (2011).

Google Scholar

[9] G. Spur, et al.: Handbuch der Fertigungstechnik. Fügen, Handhaben und Montieren, Carl Hanser, (2013).

DOI: 10.3139/9783446436565.fm

Google Scholar

[10] W. Kühn, Digital Factory – integration of simulation enhancing the product and production process towards operative control and optimization, International Journal of Simulation, Vol. 7, No. 7, 2006, 27-39.

Google Scholar

[11] M. Broy, et al., Cyber-Physical Systems – Driving force for innovation in mobility, health, energy and production, Acatech position paper, (2011).

Google Scholar

[12] S. Hodek, Methode zur vollautomatischen Integration von Feldgeräten in industrielle Steuerungssysteme, Dissertation, Kaiserslautern University, (2013).

Google Scholar

[13] N. Antzoulatos, C. Elkin, D. Serimieri, S. Ratchev, A multi-agent architecture for plug and produce on an industrial assembly platform, in: Production Engineering, Springer Berlin , Vol. 8, 2014, pp.773-781.

DOI: 10.1007/s11740-014-0571-x

Google Scholar

[14] M. Rau, Nichtlineare modellbasierte prädiktive Regelung auf Basis lernfähiger Zustandsraummodelle, Dissertation, Munich University, 2003, p.6.

Google Scholar

[15] R. Müller, M. Esser, C. Janssen, M. Vette, System identification of assembly cells – increased accuracy and demand-driven reconfiguration, in: Proceedings in Manufacturing Systems, Vol. 5, 2010, pp.71-76.

Google Scholar

[16] A. Kondeva, V. Aravantinos, L. Hermanns, L. Hörauf, The SFIT Tool: Supporting Assembly Planners to Deal with New Product Variants, in: Proceedings of the 20th IEEE International Conference on Emerging Technologies and Factory Automation, Luxemburg, (2015).

DOI: 10.1109/etfa.2015.7301646

Google Scholar

[17] T. Bauernhansl, M. ten Hompel, B. Vogel-Heuser, Industrie 4. 0 in Produktion, Automatisierung und Logistik. Anwendung, Technologien, Migration, Vieweg, Wiesbaden, 2014, pp.16-30.

DOI: 10.1007/978-3-658-04682-8

Google Scholar

[18] V. Händler, Konzeption eines bildbasierten Sensorsystems zur 3D-Indoorpositionierung sowie Analyse möglicher Anwendungen, Dissertation, Darmstadt University, 2012, p.23.

Google Scholar

[19] R. Mautz, Indoor Positioning Technologies, Habilitation, Zurich University, 2012, p.9.

Google Scholar