[1]
X. S. Jin, Z. Y. Shen, Rolling contact fatigue of wheel/rail and its advanced research progress, J. Chin. Rail Soc. 23(2001) 92-108.
Google Scholar
[2]
Q. Xiao, The elasto-plastic analysis and fatigue damage research of wheel/rail rolling contact, China Academy of Railway Sciences, Beijing, (2012).
Google Scholar
[3]
J. J. Ding, S. L. Sun, F. Li, J. H. Huang, Simulation of coupling relationship between wheel rolling Contact fatigue and wear, Chin. J. Mech. Eng. 48 (2012) 86-90.
DOI: 10.3901/jme.2012.16.086
Google Scholar
[4]
X. Li, Z. F. Wen, X. S. Jin, Investigation into wheel wear and fatigue of heavy-haul railways, J. Chin. Rail Soc. 33 (2011) 28-34.
Google Scholar
[5]
C. G. He, G. Y. Zhou, J. Wang, G. Wen, W. J. Wang, Q. Y. Liu, Effect of curve radius of rail on rolling contact fatigue properties of wheel steel, Tribol. 34 (2014) 256-261.
Google Scholar
[6]
N. Wu, J. Zeng, Investigation into wheel-rail contact geometry relationship and wheel wear fatigue of high-speed wear fatigue of high-speed vehicle, Chin. Railway Sci. 35 (2014) 80-87.
DOI: 10.3901/jme.2013.13.183
Google Scholar
[7]
J. W. Ringsberg, Life prediction of rolling contact fatigue crack initiation, Int. J. Fatigue 23 (2001) 575-586.
DOI: 10.1016/s0142-1123(01)00024-x
Google Scholar
[8]
J. W. Ringsberg, M. Loo-Morrey, B. L. Josefson, A. Kapoor, J. H. Beynon, Prediction of fatigue crack initiation for rolling contact fatigue, Int. J. Fatigue. 22(2000) 205-215.
DOI: 10.1016/s0142-1123(99)00125-5
Google Scholar
[9]
A. Ekberg, E. Kabo, H. Andersson, An engineering model for prediction of rolling contact fatigue of railway wheels, Fatig. Fract. Eng. Mater. Struct. 5 (2002) 899-909.
DOI: 10.1046/j.1460-2695.2002.00535.x
Google Scholar
[10]
C. Richard Liu, Y. Choi, Rolling contact fatigue life model incorporating residual stress scatter, Int. J. Mech. Sci. 50 (2008) 1572-1577.
DOI: 10.1016/j.ijmecsci.2008.10.008
Google Scholar
[11]
M. Taraf, E. H. Zahaf, O. Oussouaddi, A. Zeghloul, Numerical analysis for predicting the rolling contact Fatigue crack initiation in a railway wheel steel, Tribol. Int. 43(2009) 585-593.
DOI: 10.1016/j.triboint.2009.09.007
Google Scholar
[12]
M. Šraml, J. FlašKER, I. Potrč, Numerical procedure for predicting the rolling contact fatigue crack initiation, Int. J. Fatigue, 25 (2003) 585-595.
DOI: 10.1016/s0142-1123(03)00019-7
Google Scholar
[13]
F. J. Franklin, I. Widiyarta, A. Kapoor, Computer simulation of wear and rolling contact fatigue, Wear, 251 (2001) 949-955.
DOI: 10.1016/s0043-1648(01)00732-3
Google Scholar
[14]
W. M. Zhai, Vehicle-Track Coupling Dynamics, third ed., Science Press, Beijing, (2007).
Google Scholar
[15]
L. Liu, The study on the fatigue crack initiation and propagation life prediction of rail, Southwest Jiaotong University, Chengdu, (2008).
Google Scholar
[16]
S. H. Tong, The numerical simulation for hot-preflex heavy rail straightening, University of Science and Technology Liaoning, Anshan, (2012).
Google Scholar
[17]
H. Song, J. Yang, L. B. Song, K. X. Li, W. Li, Research on the variation of residual stress in the rail caused by the wheels repeated rolling, Key Eng. Mat. 665 (2016) 213-216.
DOI: 10.4028/www.scientific.net/kem.665.213
Google Scholar