[1]
A. González, E. Goikolea, J. A. Barrena, et al. Review on super capacitors: Technologies and materials, Renew. Sustain. Energ. Rev. 58 (2016) 1189-1206.
Google Scholar
[2]
Z. Tan, G. Chen, Y. Zhu, Carbon-Based Supercapacitors Produced by the Activation of Graphene, Sci. 332(6037) (2011) 1537-1541.
Google Scholar
[3]
D. Qu, L. Wang, D. Zheng, et al. An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes, J. Power Sources, 269(269) (2014) 129–135.
DOI: 10.1016/j.jpowsour.2014.06.084
Google Scholar
[4]
J. Z. Wu, X. Y. Li, Y. R. Zhu, et al. Facile synthesis of MoO 2/CNTs composites for high-performance supercapacitor electrodes, Ceram. Int. 42(7) (2016) 9250–9256.
DOI: 10.1016/j.ceramint.2016.03.027
Google Scholar
[5]
C. Yi, K. S. Pei, S. P. Jiang, NiOx nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction, Int. J. Hydrogen Energ. 39(35) (2014) 20662-20670.
DOI: 10.1016/j.ijhydene.2014.06.156
Google Scholar
[6]
B. Zhang, R. Shi, Y. Zhang, et al. CNTs/TiO2 composites and its electrochemical properties after UV light irradiation, Progr. Nat. Sci. 23(2) (2013) 164-169.
DOI: 10.1016/j.pnsc.2013.03.002
Google Scholar
[7]
J. G. Wang, Y. Ying, Z. H. Huang, et al. Synthesis and electrochemical performance of MnO2 /CNTs–embedded carbon nanofibers nanocomposites for supercapacitors, Electrochim. Acta. 75(4) (2012) 213-219.
DOI: 10.1016/j.electacta.2012.04.088
Google Scholar
[8]
J. Zheng, Q. Zhang, X. He, et al. Nanocomposites of Carbon Nanotube (CNTs)/CuO with High Sensitivity to Organic Volatiles at Room Temperature, Procedia Eng. 36(36) (2012) 235–245.
DOI: 10.1016/j.proeng.2012.03.036
Google Scholar
[9]
K. Tang, Y. Li, H. Cao, et al. Amorphous-crystalline TiO2/carbon nanofibers composite electrode by one-step electrospinning for symmetric supercapacitor, Electrochim. Acta. 190(1) (2016) 678-688.
DOI: 10.1016/j.electacta.2015.12.209
Google Scholar
[10]
S. Chen, J. Zhu, X. Wang, One-Step Synthesis of Graphene−Cobalt Hydroxide Nanocomposites and Their Electrochemical Properties, J. Phys. Chem. C, 114(27) (2010) 11829-11834.
DOI: 10.1021/jp1048474
Google Scholar
[11]
Y. Xu, L. Wang, P. Cao, et al. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors, J. Power Sources, 306(29) (2016) 742-752.
DOI: 10.1016/j.jpowsour.2015.12.106
Google Scholar
[12]
R. Giardi, S. Porro, T. Topuria, et al. One-pot synthesis of graphene-molybdenum oxide hybrids and their application to supercapacitor electrodes, App1. Mater. Today, 1(1) (2015) 27-32.
DOI: 10.1016/j.apmt.2015.08.001
Google Scholar
[13]
H. K. Chang, B. H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes, J. Power Sources, 274(15) (2015) 512-520.
DOI: 10.1016/j.jpowsour.2014.10.126
Google Scholar
[14]
C. H. Wang, H. C. Hsu, J. H. Hu, High-energy asymmetric supercapacitor based on petal-shaped MnO2 nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon nanofiber working at 2V in aqueous neutral electrolyte, J. Power Sources, 249(1) (2014).
DOI: 10.1016/j.jpowsour.2013.10.068
Google Scholar
[15]
Y. Su, I. Zhitomirsky, Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes, Appl. Energ. 153(1) (2015) 48–55.
DOI: 10.1016/j.apenergy.2014.12.010
Google Scholar
[16]
J. Keskinen, S. Tuurala, M. Sjödin, et al. Asymmetric and symmetric supercapacitors based on polypyrrole and activated carbon electrodes, Synthetic Met. 203 (2015) 192-199.
DOI: 10.1016/j.synthmet.2015.02.034
Google Scholar
[17]
K. Shen, F. Ran, X. Zhang, et al. Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers, Synthetic Met. 209(1) (2015) 369-376.
DOI: 10.1016/j.synthmet.2015.08.012
Google Scholar
[18]
A. Sumboja, C. Y. Foo, J. Yan, et al. Significant electrochemical stability of manganese dioxide/polyaniline coaxial nanowires by self-terminated double surfactant polymerization for pseudocapacitor electrode, J. Mater. Chem. 22 (2012).
DOI: 10.1039/c2jm32456c
Google Scholar
[19]
C. Zhou, Y. W. Zhang, Y. Li, J. P. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett. 13(5) (2013) 2078-(2085).
DOI: 10.1021/nl400378j
Google Scholar