Research Review of Composite Electrode Materials for Super Capacitor

Article Preview

Abstract:

Super capacitor, as a new type of power storage device, has been applied to various fields. This paper divides composite electrode materials of super capacitor into three main types. For each type, this paper analyses its performance, advantages and prospect. At last, a conclusion is drawn that it is a tendency to apply composite electrode materials to use for better performance capacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-41

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. González, E. Goikolea, J. A. Barrena, et al. Review on super capacitors: Technologies and materials, Renew. Sustain. Energ. Rev. 58 (2016) 1189-1206.

Google Scholar

[2] Z. Tan, G. Chen, Y. Zhu, Carbon-Based Supercapacitors Produced by the Activation of Graphene, Sci. 332(6037) (2011) 1537-1541.

Google Scholar

[3] D. Qu, L. Wang, D. Zheng, et al. An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes, J. Power Sources, 269(269) (2014) 129–135.

DOI: 10.1016/j.jpowsour.2014.06.084

Google Scholar

[4] J. Z. Wu, X. Y. Li, Y. R. Zhu, et al. Facile synthesis of MoO 2/CNTs composites for high-performance supercapacitor electrodes, Ceram. Int. 42(7) (2016) 9250–9256.

DOI: 10.1016/j.ceramint.2016.03.027

Google Scholar

[5] C. Yi, K. S. Pei, S. P. Jiang, NiOx nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction, Int. J. Hydrogen Energ. 39(35) (2014) 20662-20670.

DOI: 10.1016/j.ijhydene.2014.06.156

Google Scholar

[6] B. Zhang, R. Shi, Y. Zhang, et al. CNTs/TiO2 composites and its electrochemical properties after UV light irradiation, Progr. Nat. Sci. 23(2) (2013) 164-169.

DOI: 10.1016/j.pnsc.2013.03.002

Google Scholar

[7] J. G. Wang, Y. Ying, Z. H. Huang, et al. Synthesis and electrochemical performance of MnO2 /CNTs–embedded carbon nanofibers nanocomposites for supercapacitors, Electrochim. Acta. 75(4) (2012) 213-219.

DOI: 10.1016/j.electacta.2012.04.088

Google Scholar

[8] J. Zheng, Q. Zhang, X. He, et al. Nanocomposites of Carbon Nanotube (CNTs)/CuO with High Sensitivity to Organic Volatiles at Room Temperature, Procedia Eng. 36(36) (2012) 235–245.

DOI: 10.1016/j.proeng.2012.03.036

Google Scholar

[9] K. Tang, Y. Li, H. Cao, et al. Amorphous-crystalline TiO2/carbon nanofibers composite electrode by one-step electrospinning for symmetric supercapacitor, Electrochim. Acta. 190(1) (2016) 678-688.

DOI: 10.1016/j.electacta.2015.12.209

Google Scholar

[10] S. Chen, J. Zhu, X. Wang, One-Step Synthesis of Graphene−Cobalt Hydroxide Nanocomposites and Their Electrochemical Properties, J. Phys. Chem. C, 114(27) (2010) 11829-11834.

DOI: 10.1021/jp1048474

Google Scholar

[11] Y. Xu, L. Wang, P. Cao, et al. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors, J. Power Sources, 306(29) (2016) 742-752.

DOI: 10.1016/j.jpowsour.2015.12.106

Google Scholar

[12] R. Giardi, S. Porro, T. Topuria, et al. One-pot synthesis of graphene-molybdenum oxide hybrids and their application to supercapacitor electrodes, App1. Mater. Today, 1(1) (2015) 27-32.

DOI: 10.1016/j.apmt.2015.08.001

Google Scholar

[13] H. K. Chang, B. H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes, J. Power Sources, 274(15) (2015) 512-520.

DOI: 10.1016/j.jpowsour.2014.10.126

Google Scholar

[14] C. H. Wang, H. C. Hsu, J. H. Hu, High-energy asymmetric supercapacitor based on petal-shaped MnO2 nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon nanofiber working at 2V in aqueous neutral electrolyte, J. Power Sources, 249(1) (2014).

DOI: 10.1016/j.jpowsour.2013.10.068

Google Scholar

[15] Y. Su, I. Zhitomirsky, Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes, Appl. Energ. 153(1) (2015) 48–55.

DOI: 10.1016/j.apenergy.2014.12.010

Google Scholar

[16] J. Keskinen, S. Tuurala, M. Sjödin, et al. Asymmetric and symmetric supercapacitors based on polypyrrole and activated carbon electrodes, Synthetic Met. 203 (2015) 192-199.

DOI: 10.1016/j.synthmet.2015.02.034

Google Scholar

[17] K. Shen, F. Ran, X. Zhang, et al. Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers, Synthetic Met. 209(1) (2015) 369-376.

DOI: 10.1016/j.synthmet.2015.08.012

Google Scholar

[18] A. Sumboja, C. Y. Foo, J. Yan, et al. Significant electrochemical stability of manganese dioxide/polyaniline coaxial nanowires by self-terminated double surfactant polymerization for pseudocapacitor electrode, J. Mater. Chem. 22 (2012).

DOI: 10.1039/c2jm32456c

Google Scholar

[19] C. Zhou, Y. W. Zhang, Y. Li, J. P. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett. 13(5) (2013) 2078-(2085).

DOI: 10.1021/nl400378j

Google Scholar