Comparison of Fluorescence Behaviors of Rhodamine 6G with Palladium-Coated Gold Nanorods in Formations of Solutions and Thin Films

Article Preview

Abstract:

We have reported on the fluorescence behaviors of Rhodamine 6G with the palladium-coat gold nanorods in dichlormethane solution and in polymethylmethaceylate thin film. By monitoring the emission intensity of these samples, they show the enhancement of fluorescence intensity through the optical effect known as a plasmon resonance energy transfer. The enhancement intensity of fluorescence is enhanced up to 1.6 fold for the sample solution and 1.4 fold for the sample thin film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-18

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Jiang, Plasmonic properties of bimetallic nanostructures and their applications in hydrogen sensing and chemical reactions, Dissert. Abst. Inter. 75-06(E) (2013) 1-176.

Google Scholar

[2] K. D. Tomsia, E. M. Goldys, Gold and silver nanowires for fluorescence enhancement, Nanowires - Fundamental Research, InTech, Croatia, (2011).

DOI: 10.5772/16330

Google Scholar

[3] A. Zhdanov, M. P. Kreuzer, S. Rao, A. Fedyanin, P. Ghenuche, R. Quidant, D. Petrov, Detection of plasmon-enhanced luminescence fields from an optically manipulated pair of partially metal covered dielectric spheres, Opt. Lett. 33(23) (2008).

DOI: 10.1364/ol.33.002749

Google Scholar

[4] C. D. Geddes, J. R. Lakowicz, Metal-enhanced fluorescence, J. Fluorescence, 12(2) (2002) 121-129.

Google Scholar

[5] J. R. Lakowicz, M. H. Chowdhurya, K. Raya, J. Zhanga, Y. Fua, R. Badugua, C. R. Sabanayagama, K. Nowaczyka, H. Szmacinskia, K. Aslanb, C. D. Geddesa, Plasmon-controlled fluorescence: A new detection technology, Proc. of SPIE 6099 (2006).

Google Scholar

[6] S. Chandra, J. Doran, S. J. McCormack, M. Kennedy, A. J. Chatten, Enhanced quantum dot emission for lumiscent solar concentrators using plasmonic interaction, Sol. Energ. Mater. Sol. Cell. 98 (2012) 385–390.

DOI: 10.1016/j.solmat.2011.11.030

Google Scholar

[7] S. M. El-Bashir, F. M. Barakat, M. S. AlSalhi, Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator, J. Luminnesc. 143 (2013) 43-49.

DOI: 10.1016/j.jlumin.2013.04.029

Google Scholar

[8] K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, C. D. Geddes, Metal-enhanced fluorescence: an emerging tool in biotechnology, Current Opinion in Biotechnol. 16 (2005) 55-62.

DOI: 10.1016/j.copbio.2005.01.001

Google Scholar

[9] K. Setthakarn, Synthesis of photoactive compounds for ion-sensing and organic light emitting diodes apications, Master thesis of Silpakorn University (2005) 3-212.

Google Scholar

[10] W. Chansuwan, The design of chemosensors for naked-eye detection of mercury(II)ion, KKU Sci. J. 42(4) (2014) 748-760.

Google Scholar

[11] Y. Choi, T. Kang, L. P. Lee, Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome-c in living cells, Nano Lett. 9(1) (2009) 85–90.

DOI: 10.1021/nl802511z

Google Scholar

[12] Z. Yang, Y. Li, L. Zhipeng, D. Wu, J. Kang, H. Xu, M. Sun, Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles, J. Chem. Phys. 130 (2009) 2345705-1-7.

DOI: 10.1063/1.3153917

Google Scholar

[13] K. Locharoenrat, P. Damrongsak, Plasmonic properties of gold-palladium core-shell nanorods, Ukr. J. Phys. Opt. 16(3) (2015) 120-126.

DOI: 10.3116/16091833/16/3/120/2015

Google Scholar

[14] W. Soonpanich, Enhancing the performance of solar cell with luminescent materials. Mater thesis of KMITL (2013) 8-31.

Google Scholar

[15] K. Locharoenrat, P. Damrongsak, Enhancement of fluorescence in inorganic dyes by metallic nanostructured surfaces, Ukr. J. Phys. Opt. 17(1) (2016) 21-26.

DOI: 10.3116/16091833/17/1/21/2016

Google Scholar