Microstructure and Microhardness of Alumina-3wt. % Titania Coating Formed by a New Multi-Chamber Gas-Dynamic Accelerator

Article Preview

Abstract:

Alumina-titania coatings are widely used in industry for wear, abrasion or corrosion protection components. This paper presents the results of the investigation of the structure and microhardness of the alumina-titania (Al2O3:Ti wt ratio = 97:3) coating was prepared by a new multi-chamber gas-dynamic accelerator on corrosion-resistant steel substrate. Morphology of the powder particles, microstructure and phase composition of the coating were characterized with the use of scanning electron microscopy, X-ray phase analysis and Vickers hardness tester at a test load 0.2 kg. The results show that the microstructure of the alumina–3wt.% titania coating consists of region with different degrees of melting: the lamella built up from the fully melted particles of the powder, and partially melted regions. The developed coating by this method is highly dense (porosity of less than 0.2%) and tightly adherent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Jiansirisomboon, K. J. D. MacKenzie, S. G. Roberts, P. S. Grant, Low pressure plasma-sprayed Al2O3 and Al2O3/SiC nanocomposite coatings from different feedstock powders, J. Eur. Ceram. Soc. 23(6) (2003) 961-976.

DOI: 10.1016/s0955-2219(02)00207-8

Google Scholar

[2] I. M. Kusoglu, E. Celik, H. Cetinel, I. Ozdemir, O. Demirkurt, K. Onel, Wear behavior of flame-sprayed Al2O3-TiO2 coatings on plain carbon steel substrates, Surf. Coat. Technol. 200(1-4) (2005) 1173-1177.

DOI: 10.1016/j.surfcoat.2005.02.219

Google Scholar

[3] J. H. Ouyang, S. Sasaki, K. Umeda, Low-pressure plasma-sprayed ZrO2–CaF2 composite coating for high temperature tribological applications, Surf. Coat. Technol. 137(1) (2001) 21-30.

DOI: 10.1016/s0257-8972(00)00918-x

Google Scholar

[4] M. Harju, E. Levänen, T. Mäntylä, Wetting behaviour of plasma sprayed oxide coatings, Appl. Surf. Sci. 252(24) (2006), 8514-8520.

DOI: 10.1016/j.apsusc.2005.11.065

Google Scholar

[5] J. Ilavsky, C. C. Berndt, H. Herman, P. Chraska, J. Dubsky, Alumina-base plasma-sprayed materials-- Part I1: Phase transformations in aluminas, J Therm. Spray Technol. 6(4) (1997) 439-444.

DOI: 10.1007/s11666-997-0028-2

Google Scholar

[6] E. Celik, E. Avci, Effect of grit-blasting of substrate on corrosion¸ behaviour of plasma-sprayed Al2O3 coatings, Surf. Coat. Technol. 116-119 (1999) 1061-1064.

DOI: 10.1016/s0257-8972(99)00238-8

Google Scholar

[7] V. Ulianitsky, V. Shtertser, I. Smurov, Computer-controlled detonation spraying: from process fundamentals toward advanced applications, J. Therm. Spray Technol. 20(4) (2011) 791-801.

DOI: 10.1007/s11666-011-9649-6

Google Scholar

[8] D. V. Dudina, I. S. Batraev, V. Yu. Ulianitsky, M. A. Korchagin, G. V. Golubkova, S. Yu. Abramov, O. I. Lomovsky, Control of interfacial interaction during detonation spraying of Ti3SiC2–Cu composites, Inorg. Mater. 50(1) (2014) 35-39.

DOI: 10.1134/s0020168514010038

Google Scholar

[9] Yu. A. Nikolaev, A. A. Vasil'ev, V. Yu. Ulianitsky, Gas detonation and its application for technique and technologies, Combust. Explo. Shock. 39(4) (2003) 22-54.

Google Scholar

[10] V. Raj, M. S. Mumjitha, Formation and surface characterization of nanostructured Al2O3–TiO2 coatings, Bull. Mater. Sci., 37(6) (2014) 1411-1418.

DOI: 10.1007/s12034-014-0090-6

Google Scholar

[11] N. Vasilik, Yu. Tyurin, O. Kolisnichenko, RU Patent 2, 506, 341. (2012).

Google Scholar

[12] M. Kovaleva, Y. Tyurin, N. Vasilik, O. Kolisnichenko, M. Prozorova, M. Arseenko, E. Danshina, Deposition and characterization of Al2O3 coatings by multi-chamber gas-dynamic accelerator, Surf. Coat. Technol. 232 (2013) 719-725.

DOI: 10.1016/j.surfcoat.2013.06.086

Google Scholar

[13] P. Y. Pekshev, I. G. Murzin, Modeling of porosity of plasma sprayed materials, Surf. Coat. Technol. 56 (1993) 199-208.

DOI: 10.1016/0257-8972(93)90252-j

Google Scholar

[14] M. U. Devi, New phase formation in Al2O3-based thermal spray coatings, Ceram. Int., 30(4) (2004) 555-565.

DOI: 10.1016/j.ceramint.2003.07.002

Google Scholar

[15] S. Yılmaz, An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3-13 wt. % TiO2 with bond coat on pure titanium substrate, Ceram. Int. 35(5) (2009) 2017-(2022).

DOI: 10.1016/j.ceramint.2008.11.017

Google Scholar