Compressive Properties of Polylactic Acid-Based Nanocomposite Foams Reinforced with Coconut Fibers

Article Preview

Abstract:

The investigation focused on the properties of composite foam obtained by a compression molding method. The results could clarify the interaction among PLA, silica nanoparticles and coconut fiber. The compressive properties, including the compressive force and modulus of composites, contained in coconut fiber were improved. The incorporation of silica nanoparticles was able to modify the compressive properties slightly, whereas the thermal properties were decreased explicitly. Hydrogen bonding between the carboxylic group of PLA and the silica bonded group affected the increment in mechanical properties of composites. However, the incorporation of coconut fibers in composites exhibited a rougher surface. In addition, beneficial distribution of silica nanoparticles and porosity in the nanocomposite foam, equivalent to neat PLA foam, could be obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-25

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. S. Parmar, M. Singh, R. K. Tiwari, S. Saran, Study on flame retardant properties of poly (lactic acid) fibre fabrics, IJFTR. 39 (2014) 268-273.

Google Scholar

[2] W. X Zhang, Y. Z. Wang, Synthesis and properties of high molecular weight poly (lactic acid) and its resultant fibers, CJPS. 26(4) (2008) 425−432.

DOI: 10.1142/s0256767908003096

Google Scholar

[3] J. W. Rhim, Effect of PLA lamination on performance characteristics of agar/κ-carrageenan/clay bio-nanocomposite film, Food. Res. Int. 51(2) (2013) 714-722.

DOI: 10.1016/j.foodres.2013.01.050

Google Scholar

[4] A. Chauhan, P. Chauhan, Natural Fibers Reinforced Advanced Materials, J. Chem. Eng. Process. Technol. 6 (2013) 1-3.

DOI: 10.4172/2157-7048.s6-003

Google Scholar

[5] J. Sahari, S. M. Sapuan, Natural fiber reinforced biodegradable polymer composites, Rev. Adv. Mater. Sci. 30 (2011) 166-174.

Google Scholar

[6] K. T. Khoon. Y. C. Ching, S. C. Poh, C. A. Luqman, S. N. Gan, A review of natural of natural fiber reinforced poly (vinyl alcohol) based composites: Application and opportunity, Polym. 7(11) (2015) 2205-2222.

DOI: 10.3390/polym7111509

Google Scholar

[7] A. Dorigato, M. Sebastiani, A. Pegoretti, L. Fambri, Effect of silica nanoparticles on the mechanical performances of poly (lactic acid), J. Polym. Environ. 20(3) (2012) 713-725.

DOI: 10.1007/s10924-012-0425-6

Google Scholar

[8] K. Fukushima, D. Tabuani, C. Abbate, M. Arena, P. Rizzarelli, Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. Euro Polym. J. 47(2) (2011) 139-152.

DOI: 10.1016/j.eurpolymj.2010.10.027

Google Scholar

[9] N. A. Ali, I. A. AL-Ajaj, F. T. M. Noori, Effect of nano SiO2 on some mechanical properties of biodegradable polylactic acid, Int. J. Mech. Eng. Technol. 5(2) (2014) 1-7.

Google Scholar

[10] G. Ji, W. Zhai, D. Lin, Q. Ren, W. Zheng, D. W. Jung, Microcellular foaming of poly (lactic acid)/silica nanocomposites in compressed CO2: Critical influence of crystallite size on cell morphology and foam expansion, Ind. Eng. Chem. Res. 52(19) (2013).

DOI: 10.1021/ie302281c

Google Scholar

[11] Y. Y. Yee, Y. C. Ching, S. Rozali, N. A. Hashim, R. Singh, Preparation and characterization of poly (lactic acid)-based composite reinforced with oil palm empty fruit bunch fiber and nanosilica, BioResour. 11(1) (2016) 2269-2286.

DOI: 10.15376/biores.11.1.2269-2286

Google Scholar

[12] I. R. Mustapa, R. A. Shanks, I. Kong, Poly (lactic acid)-hemp-nanosilica hybrid composites: Thermomechanical, thermal behavior and morphological properties, Int. J. Adv. Sci. Eng. Technol. 3(1) (2013) 192- 199.

Google Scholar

[13] C. Parida, S. K. Das, P. Chaterjee, The thermal and crystallization studies of luffa fiber reinforced poly lactic acid composites, J. Compos. Mater. 6(1) (2016) 1-7.

DOI: 10.4236/ojcm.2016.61001

Google Scholar

[14] B. M. Pilić, T. I. Radusin, I. S. Ristić, C. Silvestre, V. L. Lazić, S. S. Baloš, D. Duraccio, Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid) polymer matrix, Hemijska industrija, (2015).

DOI: 10.2298/hemind150107015p

Google Scholar