[1]
J. Liu, T. Bi, Y. Niu, et al, The utilization of large-scale renewable powers with high security and efficiency in smart grid, Power and Energy Society General Meeting, 2012 IEEE. (2012) 1-5.
DOI: 10.1109/pesgm.2012.6345334
Google Scholar
[2]
Yu D, Duan Y, Liu J, et al, Experimental study on fault caused by partial arc steam forces and its economic solution, J. Journal of Engineering for Gas Turbines and Power. 132 (2010) 064501.
DOI: 10.1115/1.4000090
Google Scholar
[3]
B. Parsons, M. Milligan, B. Zavadil, et al, Grid impacts of wind power: a summary of recent studies in the United States, J. Wind Energy. 7 (2004) 87-108.
DOI: 10.1002/we.111
Google Scholar
[4]
J. Wan, J. S. Gu, G. R. Ren, et al, Experimental Study on Large Turbine Hp-Valve's Excitation Fault Caused by Steam's Unsteady Flow and Its Economic Solution, J. Appl. Mech. Mater. 536-537 (2014) 1501-1509.
DOI: 10.4028/www.scientific.net/amm.536-537.1501
Google Scholar
[5]
Q. Hu, P. Su, D. Yu, et al, Pattern-Based Wind Speed Prediction Based on Generalized Principal Component Analysis, J. Sustainable Energy, IEEE Transactions on. 5. 3. (2014) 866-874.
DOI: 10.1109/tste.2013.2295402
Google Scholar
[6]
A. Kusiak, H. Zheng, Z. Song, Wind farm power prediction: a data-mining approach, J. Wind Energy. 12. 3. (2009) 275-293.
DOI: 10.1002/we.295
Google Scholar
[7]
Q. Hu, R. Zhang, Y. Zhou, Transfer learning for short-term wind speed prediction with deep neural networks, J. Renewable Energy. 85 (2016) 83-95.
DOI: 10.1016/j.renene.2015.06.034
Google Scholar
[8]
Q. Hu, S. Zhang, Z. Xie, et al, Noise model based ν-support vector regression with its application to short-term wind speed forecasting, J. Neural Networks. 57 (2014) 1-11.
DOI: 10.1016/j.neunet.2014.05.003
Google Scholar
[9]
Q. Hu, S. Zhang, M. Yu, et al, Short-Term Wind Speed or Power Forecasting With Heteroscedastic Support Vector Regression, J. Sustainable Energy, IEEE Transactions on. 7. 1 (2016) 241-249.
DOI: 10.1109/tste.2015.2480245
Google Scholar
[10]
J. Wan, Z. G. Zhao, G. R. Ren, et al, Uncertainty Estimation Method for Wind speed Random Fluctuation Based on its Amplitude Modulation Effect, J. Adv. Mater. Res. 945-949 (2014) 2801-2805.
DOI: 10.4028/www.scientific.net/amr.945-949.2801
Google Scholar
[11]
I. Van der Hoven, Power spectrum of horizontal wind speed in the frequency range from 0. 0007 to 900 cycles per hour, J. Journal of meteorology. 14. 2 (1957) 160-164.
DOI: 10.1175/1520-0469(1957)014<0160:psohws>2.0.co;2
Google Scholar
[12]
E. Simiu, R. H. Scanlan, Wind effects on structures: fundamentals and applications to design John Wiley, (1996).
Google Scholar
[13]
IEC 61400-1 third edition 2005-08 Wind turbines – Part 1: Design requirements, International Electrotechnical Commission, IEC, (2005).
Google Scholar
[14]
N. Carpman, Turbulence intensity in complex environments and its influence on small wind turbines, (2011).
Google Scholar
[15]
S. Frandsen, M. L. Thogersen, Integrated fatigue loading for wind turbines in wind farms by combining ambient turbulence and wakes, J. Wind Engineering. 23-29 (1999) 327-340.
Google Scholar
[16]
E. Welfonder, R. Neifer, M. Spanner, Development and experimental identification of dynamic models for wind turbines, J. Control Engineering Practice. 5. 1 (1997) 63-73.
DOI: 10.1016/s0967-0661(96)00208-0
Google Scholar