[1]
Information on http: /www. geni. org/globalenergy/research/review-and-comparison-of-solar- technologies/Review- and-Comparison-of-Different-Solar-Technologies. pdf.
Google Scholar
[2]
R. Arora, S.C. Kaushik, R. Kumar, R. Arora, Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making, Elec. Pow. Ener. Syst. 74 (2016) 25–35.
DOI: 10.1016/j.ijepes.2015.07.010
Google Scholar
[3]
M.H. Ahmadi, M.A. Ahmadi, A. Mellit, F. Pourfayaz, M. Feidt, Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation, Elec. Pow. Ener. Syst. 78 (2016).
DOI: 10.3390/ecea-1-a009
Google Scholar
[4]
R. Beltran-Chacon, D. Leal-Chavez, D. Sauceda, M. Pellegrini-Cervantes, M. Borunda, Design and analysis of a dead volume control for a solar Stirling engine with induction generator, Ener. 93 (2015) 2593-2603.
DOI: 10.1016/j.energy.2015.09.046
Google Scholar
[5]
F. Aksoy, H. Karabulut, C. Cınar, H. Solmaz, Y.O. Ozgoren, A. Uyumaz, Thermal performance of a Stirling engine powered by a solar simulator, Appl. Therm. Eng. 86 (2015) 161-167.
DOI: 10.1016/j.applthermaleng.2015.04.047
Google Scholar
[6]
G. Prinsloo, R. Dobson, Solar Tracking, Prinsloo, South Africa, (2014).
Google Scholar
[7]
N. Martaj, L. Grosu, P. Rochelle, Thermodynamic study of a low temperature difference stirling engine at steady state operation, Int. J. Thermodyn. 10 (2007) 165-176.
Google Scholar
[8]
Y. Kato, K. Baba, Empirical estimation of regenerator efficiency for a low temperature differential Stirling engine, Renew. Ener. 62 (2014) 285-292.
DOI: 10.1016/j.renene.2013.07.023
Google Scholar
[9]
Y. Kato, Indicated diagrams of a low temperature differential Stirling engine using flat plates as heat exchangers, Renew. Ener. 85 (2016) 973-980.
DOI: 10.1016/j.renene.2015.07.053
Google Scholar
[10]
M. Hooshang, R. Askari Moghadam, S. Alizadeh Nia, M. Tale Masouleh, Optimization of Stirling engine design parameters using neural networks, Renew. Ener. 74 (2015) 855-866.
DOI: 10.1016/j.renene.2014.09.012
Google Scholar
[11]
A. Sripakagorn, C. Srikam, Design and performance of a moderate temperature difference Stirling engine, Renew. Ener. 36 (2011) 1728-1733.
DOI: 10.1016/j.renene.2010.12.010
Google Scholar
[12]
A. Asnaghi, S.M. Ladjevardi, P. Saleh Izadkhast, A.H. Kashani, Thermodynamics performance analysis of solar Stirling engines, Inter. Scholar. Res. Network 2012 (2012) 1-14.
DOI: 10.5402/2012/321923
Google Scholar
[13]
C. Cinar, H. Karabulut, Manufacturing and testing of a gamma type Stirling engine, Renew. Ener. 30 (2005) 57-66.
Google Scholar
[14]
A.D. Minassians, Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation, California University, California, (2007).
Google Scholar
[15]
G. Walker, Stirling, Oxford Clarendon, Oxford, (1980).
Google Scholar
[16]
W. Beale, Stirling cycle type thermal device, U.S. Patent 3552120. (1971).
Google Scholar
[17]
I. Barreno, S.C. Costa, M. Cordon, M. Tutar, I. Urrutibeascoa, X. Gomez, G. Castillo, Numerical correlation for the pressure drop in Stirling engine heat exchangers, Inter. J. Therm. Sci. 97 (2015) 68-81.
DOI: 10.1016/j.ijthermalsci.2015.06.014
Google Scholar
[18]
Z. Li, Y. Haramura, Y. Kato, D. Tang, Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers, Ener. 64 (2014) 31-43.
DOI: 10.1016/j.energy.2013.11.041
Google Scholar