Design and Fabrication of Gamma-Type Stirling Engine on Parabolic Dish of Solar Concentrator by a Compression Ratio Method

Article Preview

Abstract:

In this article, we have designed and fabricated the gamma-type Stirling engine based on the compression ratio technique. This engine is attached on a parabolic dish of a solar collector. The engine shows a good performance in terms of compression ratio, external work, total pressure, and engine’s speed. Our engine offers the thermal efficiency of 30.59 % so that it can reach the output mechanical power of 0.934. The temperature difference of 137 K can maintain very well for the heat collection of the solar collector even when the weather conditions are poor. Furthermore, our materials are environmentally friendly and this design is expected to be in the applications of the solar tracker in the future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

383-388

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http: /www. geni. org/globalenergy/research/review-and-comparison-of-solar- technologies/Review- and-Comparison-of-Different-Solar-Technologies. pdf.

Google Scholar

[2] R. Arora, S.C. Kaushik, R. Kumar, R. Arora, Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making, Elec. Pow. Ener. Syst. 74 (2016) 25–35.

DOI: 10.1016/j.ijepes.2015.07.010

Google Scholar

[3] M.H. Ahmadi, M.A. Ahmadi, A. Mellit, F. Pourfayaz, M. Feidt, Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation, Elec. Pow. Ener. Syst. 78 (2016).

DOI: 10.3390/ecea-1-a009

Google Scholar

[4] R. Beltran-Chacon, D. Leal-Chavez, D. Sauceda, M. Pellegrini-Cervantes, M. Borunda, Design and analysis of a dead volume control for a solar Stirling engine with induction generator, Ener. 93 (2015) 2593-2603.

DOI: 10.1016/j.energy.2015.09.046

Google Scholar

[5] F. Aksoy, H. Karabulut, C. Cınar, H. Solmaz, Y.O. Ozgoren, A. Uyumaz, Thermal performance of a Stirling engine powered by a solar simulator, Appl. Therm. Eng. 86 (2015) 161-167.

DOI: 10.1016/j.applthermaleng.2015.04.047

Google Scholar

[6] G. Prinsloo, R. Dobson, Solar Tracking, Prinsloo, South Africa, (2014).

Google Scholar

[7] N. Martaj, L. Grosu, P. Rochelle, Thermodynamic study of a low temperature difference stirling engine at steady state operation, Int. J. Thermodyn. 10 (2007) 165-176.

Google Scholar

[8] Y. Kato, K. Baba, Empirical estimation of regenerator efficiency for a low temperature differential Stirling engine, Renew. Ener. 62 (2014) 285-292.

DOI: 10.1016/j.renene.2013.07.023

Google Scholar

[9] Y. Kato, Indicated diagrams of a low temperature differential Stirling engine using flat plates as heat exchangers, Renew. Ener. 85 (2016) 973-980.

DOI: 10.1016/j.renene.2015.07.053

Google Scholar

[10] M. Hooshang, R. Askari Moghadam, S. Alizadeh Nia, M. Tale Masouleh, Optimization of Stirling engine design parameters using neural networks, Renew. Ener. 74 (2015) 855-866.

DOI: 10.1016/j.renene.2014.09.012

Google Scholar

[11] A. Sripakagorn, C. Srikam, Design and performance of a moderate temperature difference Stirling engine, Renew. Ener. 36 (2011) 1728-1733.

DOI: 10.1016/j.renene.2010.12.010

Google Scholar

[12] A. Asnaghi, S.M. Ladjevardi, P. Saleh Izadkhast, A.H. Kashani, Thermodynamics performance analysis of solar Stirling engines, Inter. Scholar. Res. Network 2012 (2012) 1-14.

DOI: 10.5402/2012/321923

Google Scholar

[13] C. Cinar, H. Karabulut, Manufacturing and testing of a gamma type Stirling engine, Renew. Ener. 30 (2005) 57-66.

Google Scholar

[14] A.D. Minassians, Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation, California University, California, (2007).

Google Scholar

[15] G. Walker, Stirling, Oxford Clarendon, Oxford, (1980).

Google Scholar

[16] W. Beale, Stirling cycle type thermal device, U.S. Patent 3552120. (1971).

Google Scholar

[17] I. Barreno, S.C. Costa, M. Cordon, M. Tutar, I. Urrutibeascoa, X. Gomez, G. Castillo, Numerical correlation for the pressure drop in Stirling engine heat exchangers, Inter. J. Therm. Sci. 97 (2015) 68-81.

DOI: 10.1016/j.ijthermalsci.2015.06.014

Google Scholar

[18] Z. Li, Y. Haramura, Y. Kato, D. Tang, Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers, Ener. 64 (2014) 31-43.

DOI: 10.1016/j.energy.2013.11.041

Google Scholar