Modeling an Explosive Liquid Outflow from High Pressure Thin Tubes and Nozzles

Article Preview

Abstract:

To describe the explosive flow in thin tubes the model of vapor-liquid mixture with heat and mass transfer in two-dimensional axisymmetric formulation is employed. The phase transformation is significantly amplified with increasing of initial saturation temperature. The radial expansion of the jet outflow occurs due to the intensification of vaporization from cylindrical to conical form and parabolic form for supercritical initial state. Another problem applied to the outflow of a detonation wave in liquid filled with chemically active gas bubbles from the thin cylindrical tube. Modeling shows the important role of the opening angle of the outflow jet, which can either support the detonation or put it down.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

377-382

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. R. Edwards, T. P. O'Brien, Studies of phenomena connected with the depressurization of water reactors, J. Brit. Nucl. Energ. Soc. 9(2) (1970) 125–135.

Google Scholar

[2] A. V. Reshetnikov, K. A. Busov, N. A. Mazheiko, V. N. Skokov, V.P. Koverda, Transient behavior of superheated water jets boiling, Thermophys. Aeromech. 19(2) (2012) 329–336.

DOI: 10.1134/s0869864312020151

Google Scholar

[3] R. Kh. Bolotnova, V. A. Buzina (V. A. Korobchinskaya), Spatial modeling of the nonstationary processes of boiling liquid outflows from high pressure vessels, Comput. Continuum Mech. 7(4) (2014) 343–352.

DOI: 10.7242/1999-6691/2014.7.4.33

Google Scholar

[4] R. I. Nigmatulin, Dynamics of multiphase media, Hemisphere, N.Y., (1990).

Google Scholar

[5] J. D. Shevelev, Spatial problems of computational aerohydrodynamics, Nauka, Moscow, (1986).

Google Scholar

[6] D. A. Labuntsov, B. A. Kol'chugin, V. S. Golovin, E. A. Zakharova, L. N. Vladimirova, Study of the growth of bubbles during boiling of saturated water within a wide range of pressures by means of high-speed moving pictures, High Temp. 2(3) (1964).

Google Scholar

[7] R. Kh. Bolotnova, V. A. Buzina (V. A. Korobchinskaya), M. N. Galimzianov, V. Sh. Shagapov, Hydrodynamic features of the boiling liquid outflow processes, Teplofizika i Aeromehanika 6(8) (2012) 719–730.

Google Scholar

[8] R. I. Nigmatulin, R. Kh. Bolotnova, Wide-Range Equation of State for Water and Steam: Simplified Form, High Temp. 49(2) (2011) 303–306.

DOI: 10.1134/s0018151x11020106

Google Scholar

[9] B. Alder, S. Fernbach, M. Rotenberg, Computing methods in fluid dynamics, Acad. Press, N-Y, (1964).

Google Scholar

[10] R. Kh. Bolotnova, M. N. Galimzianov, A. S. Topolnikov, V. A. Buzina (V. A. Korobchinskaya), U. O. Agisheva, Hydrodynamic processes in bubbly liquid flow in tubes and nozzles, World Acad. Sci. Eng. Technol. 6(8) (2012) 1714–1721.

Google Scholar

[11] R. Kh. Bolotnova, M. N. Galimzianov, A. S. Topolnikov, U. O. Agisheva, V. A. Buzina (V. A. Korobchinskaya), Nonlinear effects in bubbly liquid with shock waves, World Acad. Sci. Eng. Technol. 6(8) (2012) 1095–1102.

Google Scholar

[12] R. I. Nigmatulin, R. Kh. Bolotnova, N. K. Vakhitova, A. S. Topolnikov, S. I. Konovalova, N. A. Makhota, Amplification of compression waves in clean and bubbly liquids, World Acad. Sci. Eng. Technol. 3(10) (2009) 1260–1265.

Google Scholar