Flatwise Compression and Flexural Behaviour of Perlite/Sodium Silicate Composite Foam

Article Preview

Abstract:

Flatwise compression and flexural behaviour of perlite/sodium silicate composites made of expanded perlite and sodium silicate is studied using a new manufacturing method for applications of sandwich foam core materials. Sodium silicate content in composites (a perlite particle size of 2-3mm) was varied for a range of 0.1 - 0.3 g/ml and compaction ratio for moulding for a range of 2.0 - 3.0. Specimens under flatwise compression were found to be more capable for energy absorption than those previously reported for lengthwise compression, ascribing to appearance of densification stage following the initial cracking. Also, under flexural loading, energy absorption in composites after the initial cracking was found to be in operation, supporting their candidacy for wide applications where gypsum boards are dominant. It was deduced from both flexural testing results and fracture mechanism that compressive strength is higher than tensile strength, suggesting the future directions of mechanical performance improvement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-24

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] RW. Le Maitre, A. Streckeisen, B, Zanettin, et al. Igneous Rocks: A classification and glossary of terms, recommendations of the international union of geological sciences, Sub-commission of the Systematics of Igneous Rocks. 2nd ed. Cambridge University Press, New York, (2002).

DOI: 10.1017/cbo9780511535581

Google Scholar

[2] M. Singh, M. Garg, Perlite-based building materials – a review of current applications, Construction and Building Materials. 5 (1991) 75-81.

DOI: 10.1016/0950-0618(91)90004-5

Google Scholar

[3] N. Burriesci, A. Carmelo, P. Antonucci, Physico-chemical characterization of perlite of various origins, Materials Letters. 3 (3) ( 1985) 103-110.

DOI: 10.1016/0167-577x(85)90008-4

Google Scholar

[4] S. J. Johnstone, M. G. Johnstone, Minerals for the chemical and allied industries, 2nd ed., Chapman and Hall, London, (1961).

Google Scholar

[5] J. S. Luongo, US Patent No 6, 251, 979 B1. (2001).

Google Scholar

[6] S. Yilmazer, M. Ozdeniz, The effect of moisture content on sound absorption of expanded perlite plates. Building and Environment, 40 (2005) 311-318.

DOI: 10.1016/j.buildenv.2004.07.004

Google Scholar

[7] W. P. Dube, L. L. Sparks, A. J. Slifka, Thermal conductivity of evacuated perlite at low temperatures as a function of load and load history, Cryogenics, 31(1991) 3-6.

DOI: 10.1016/0011-2275(91)90183-w

Google Scholar

[8] T. Kendall, No sign of the bubble bursting – perlite uses and markets, Industrial Minerals, (2000) 51-59.

Google Scholar

[9] B. Rodsky, US Patent 2, 858, 227. (1958).

Google Scholar

[10] B. Gray, US Patent 4, 042, 406. (1977).

Google Scholar

[11] P. B. Shepherd, R. L. Dolin, US Patent 5, 256, 222. (1993).

Google Scholar

[12] JH. Hill, US Patent 4, 126, 512, (1978).

Google Scholar

[13] H. Aglan, M. Morsy, et al, Evaluation of fiber reinforced nanostructured perlite-cementitious surface compounds for building skin applications, Constr. Build. Mater. 23 (2009) 138–145.

DOI: 10.1016/j.conbuildmat.2008.01.010

Google Scholar

[14] J. Miscall, C. E. Rahr, US Patent 2, 626, 864, (1953).

Google Scholar

[15] N. Sherman, J. H. Cameron, US Patent 4, 297, 311, (1981).

Google Scholar

[16] H. G. Seybold, US Patent 2, 705, 198, (1955).

Google Scholar

[17] A. Vimmrova, M. Keppert, L. Svoboda, R. Cerny, Lightweight gypsum composites: Design strategies for multi-functionality, Cement and Concrete Composites, 33 (2011) 84-89.

DOI: 10.1016/j.cemconcomp.2010.09.011

Google Scholar

[18] I. B. Topcu, B. Isikdag, Effect of expanded perlite aggregate on the properties of lightweight concrete, Journal of Materials Processing Technology, 204 (2008) 34-38.

DOI: 10.1016/j.jmatprotec.2007.10.052

Google Scholar

[19] A. Colak, Density and strength characteristics of foamed gypsum, Cement and Concrete Composites, 22 (2000) 193-200.

DOI: 10.1016/s0958-9465(00)00008-1

Google Scholar

[20] J. Skujans, A. Vulans, I. Uldis, A. Aboltins, Measurements of heat transfer of multi-layered wall construction with foam gypsum, Applied Thermal Engineering, 27 (2007) 1219–1224.

DOI: 10.1016/j.applthermaleng.2006.02.047

Google Scholar

[21] D. Shastri, H. S. Kim, A new consolidation process for expanded perlite particles, Construction and Building Materials, 60 (2014) 1-7.

DOI: 10.1016/j.conbuildmat.2014.02.041

Google Scholar

[22] H. S. Kim, US Patent 2014/0033953 A1. (2014).

Google Scholar

[23] H. S. Kim, M. M. Islam, Syntactic foams as building materials consisting of inorganic hollow microspheres and starch binder, in: D. C. Cornejo, J. L. Haro (Eds. ), Building materials: properties and performance and applications, Nova Publishers, New York, 2009, p.1.

Google Scholar

[24] H. S. Kim, P. Plubrai, Manufacturing and failure mechanisms of syntactic foam under compression, Compos. A: Appl. Sci. Manuf., 35 (2004) 1009–1015.

DOI: 10.1016/j.compositesa.2004.03.013

Google Scholar

[25] M. M. Islam, H. S. Kim, Novel syntactic foams made of ceramic hollow microspheres and starch – theory, structure and properties, J. Mater. Sci., 42 (2007) 6123–6132.

DOI: 10.1007/s10853-006-1091-7

Google Scholar

[26] M. M. Islam, H. S. Kim, Manufacture of syntactic foams: pre-mold processing, Mater. Manuf. Processes, 22 (2007) 28–36.

DOI: 10.1080/10426910601015857

Google Scholar

[27] M. M. Islam, H. S. Kim, Manufacture of syntactic foams using starch as binder: post-mold processing, Mater. Manuf. Processes, 23 (2008) 884–892.

DOI: 10.1080/10426910802413661

Google Scholar

[28] M. M. Islam, H. S. Kim, Pre-mould processing technique for syntactic foams: generalised modelling, theory and experiment, J. Mater. Process Technol., 211 (2011) 708–716.

DOI: 10.1016/j.jmatprotec.2010.12.006

Google Scholar

[29] A. G. Celik, Investigation on characteristic properties of potassium borate and sodium borate blended perlite bricks, Journal of Cleaner Production, 102 (2015) 88-95.

DOI: 10.1016/j.jclepro.2015.04.114

Google Scholar

[30] Y. A. Owusu, Physical-chemical study of sodium silicate as a foundry sand binder, Advances in Colloid and Interface Science, 18 (1982) 57-91.

DOI: 10.1016/0001-8686(82)85031-8

Google Scholar

[31] J. Karger-Kocsis, Editorial corner - a personal view Water glass – an alternative precursor for sol-gel derived solica nanofiller in polymer composites?, Express Polymer Letters, 8(12) (2014), 880-880.

DOI: 10.3144/expresspolymlett.2014.89

Google Scholar

[32] M. Arifuzzaman and H. S. Kim, Novel mechanical behaviour of perlite/sodium silicate composites, Construction and Building Materials, 93 (2015) 230-240.

DOI: 10.1016/j.conbuildmat.2015.05.118

Google Scholar

[33] M. Arifuzzaman and H. S. Kim, A model of foam density prediction for expanded perlite composite, 3rd Asia Conference in Mechanical and Materials Engineering (ACMME2015), July 2015, Chengdu, China.

Google Scholar

[34] J.C. Rubio-Avalosa, A. Manzano-Ramıreza, J.G. Luna-Barcenasa, J.F. Perez-Robles, E.M. Alonso-Guzman, M.E. Contreras-Garcıa, J. Gonzalez-Hernandez, Flexural behavior and microstructure analysis of a gypsum-SBR composite material, Materials Letters, 59 (2005).

DOI: 10.1016/j.matlet.2004.07.054

Google Scholar