Analysis of Interface Trap Densities for Al2O3 Dielectric Material Based Ultra Thin MOS Devices

Article Preview

Abstract:

In this paper the interface trap densities (Dit) are analyzed for ultra thin dielectric material based metal oxide semiconductor (MOS) devices using high-k dielectric material Al2O3. The Dit have been calculated by a novel approach using conductance method and it indicates that by reducing the thickness of the oxide, the Dit increases and similar increase is also found by replacing SiO2 with Al2O3. For the same oxide thickness SiO2 has the lowest Dit and found to be the order of 1011 cm-2eV-1. The Dit is found to be in good agreement with published fabrication results at p-type doping level of 1 × 1017 cm-3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-29

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Wu, Y. Wu, C. Chao, C. Lin, C. Wu, Crystalline ZrTiO4-Gated Ge Metal-Oxide-Semiconductor devices with amorphous Yb2O3 as a passivation Layer, IEEE Trans. on Nanotech. 12 (2013) 1018-1021.

DOI: 10.1109/tnano.2013.2283252

Google Scholar

[2] N. P. Maity, R. Maity, R. K. Thapa, S. Baishya, Study of Interface Charge Densities for ZrO2 and HfO2 based Metal-Oxide-Semiconductor Devices, Advances in Material Science and Engineering 2014 (2014) Article ID 497274 1-6.

DOI: 10.1155/2014/497274

Google Scholar

[3] N. P. Maity, R. R. Thakur, R. Maity, R. K. Thapa, S. Baishya, Analysis of Interface Charge Using Capacitance-Voltage Method for Ultra Thin HfO2 Gate Dielectric based MOS Devices, Procedia Computer Science, 5 (2015) 757-760.

DOI: 10.1016/j.procs.2015.07.470

Google Scholar

[4] N. P. Maity, R. Maity, R. K. Thapa, S. Baishya, Effect of Image Force on Tunneling Current for Ultra Thin Oxide Layer Based Metal Oxide Semiconductor Devices, Nanoscience and Nanotechnology Letters 7 (2015) 331-333.

DOI: 10.1166/nnl.2015.1970

Google Scholar

[5] D. Hoogeland, K. B. Jinesh, F. Roozeboom, W. Besling, M. Van, W. Kessels, Plasma-assisted atomic layer deposition of TiN/Al2O3 stacks for metal-oxide-semiconductor capacitor applications, Journal of Applied Physics 106 (2009) 114107 1-7.

DOI: 10.1063/1.3267299

Google Scholar

[6] N. P. Maity, R. Maity, R. K. Thapa, S. Baishya, Image Force Effect on Tunneling Current for Ultra Thin High-K Dielectric Material Al2O3 Based MOS Devices, J. Nanoelectronics and Optoelectronics 10 (2015) 645-648.

DOI: 10.1166/jno.2015.1812

Google Scholar

[7] D. Souza, J. Kiewra, Y. Sun, A. Callegari, D. Sadana, G. Shahidi, D. Webb, Inversion mode n-channel GaAs field effect transistor with high-k/metal gate, Applied Physics Letters 92 (2008) 153508 1-2.

DOI: 10.1063/1.2912027

Google Scholar

[8] N. P. Maity, R. R. Thakur, R. Maity, R. K. Thapa, S. Baishya, Interface Charge Density Measurement for Ultra Thin ZrO2 Material based MOS Devices Using Conductance Method, Procedia Computer Science, 5 (2015) 761-765.

DOI: 10.1016/j.procs.2015.07.472

Google Scholar

[9] G. Adamopoulos, S. Thomas, D. Bradley, M. McLachlan, T. Anthopoulos, Low-voltage ZnO thin-film transistors based on Y2O3 and Al2O3 high-k dielectrics deposited by spray pyrolysis in air, Appl. Physics Lett. 98 (2011) 123503.

DOI: 10.1063/1.3568893

Google Scholar

[10] N. P. Maity, A. Pandey, S. Chakraborty, M. Roy, High-k HfO2 based Metal-Oxide-Semiconductor Devices Using Silicon and Silicon Carbide Semiconductor, J. Nano - Electron. Phys. 3 (2011) 947-955.

Google Scholar

[11] N. P. Maity, S. Chakraborty, M. Roy, Silicon and Silicon Carbide Based Metal-Oxide-Semiconductor Devices Using HfO2 and SiO2 Gate Dielectric, International Journal of Applied Engineering Research 6 (2011) 391-399.

Google Scholar

[12] N. P. Maity, R. K. Thapa, S. Baishya, Comparison of Different High-k Dielectric Materials in MOS Device from C-V Characteristics, Advanced materials Research 816 (2013) 60-64.

DOI: 10.4028/www.scientific.net/amr.816-817.60

Google Scholar

[13] E. Nicollian, J. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley-Blackwell Publishers, USA, (2002).

Google Scholar

[14] B. E. Deal, Standardized terrninulogy for oxide charge associated with thermally oxidized silicon, IEEE Transactions on Electron Devices 27 (1980) 606-608.

DOI: 10.1109/t-ed.1980.19908

Google Scholar

[15] C. Lu, K. Liao, C-Y Lu, S-C Chang, T-K Wang, F-C Hou, Y-T Hsu, Tunneling component suppression in charge pumping measurement and reliability study for high-k gated MOSFETs, Microelectronics Reliability 51 (2011) 2110–2114.

DOI: 10.1016/j.microrel.2011.04.021

Google Scholar

[16] R. Engel-Herbert, Y. Hwang, S. Stemmer, Comparison of methods to quantity Interface Trap Densities at dielectric/III-V Semiconductor Interfaces, J. of Appl. Physics 108 (2010) 1241011.

DOI: 10.1063/1.3520431

Google Scholar