Anomalous Magneto-Electric Properties in Chalcopyrite MnGeP2 Films

Article Preview

Abstract:

We have successfully grown MnGeP2 thin films and Ge and MnGeP2 alloy films on GaAs(100) substrate. Magnetization measurements have been performed on MnGeP2 film samples at temperatures from 5 to 400 K. The measurements have shown that there are a ferromagnetic to paramagnetic transition above room temperature. Field dependent magnetization experiments have shown a coercive field of 160, 1400, 3900 Oe at 300, 250 and 5 K, respectively. A negative magnetoresistance (MR) has been found with a maximum change less than 2% at 5 T and 5 K. The MR measurements on the films have displayed hysteric behaviors with respect to the external field sweep at low fields at temperature below the ferromagnetic transition. Anomalous Hall effects have been found in the MnGeP2 film and Ge and MnGeP2 alloy film samples. Above the transition temperature neither hysteric behavior nor anomalous Hall effect was found. These results imply that spin polarized hole carriers exist in the MnGeP2 films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-115

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye, (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett. 69 (1996) 363.

DOI: 10.1063/1.118061

Google Scholar

[2] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, D. D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure, Nature 402 (1999) 790.

DOI: 10.1038/45509

Google Scholar

[3] S. Datta, B. Das, Electronic analog of the electro optic modulator, Appl. Phys. Lett. 56 (1990) 665.

DOI: 10.1063/1.102730

Google Scholar

[4] G. A. Prinz, Spin Polarized Transport, Phys. Today 48(4) (1995) 58.

Google Scholar

[5] J. L. Shay, J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications, Pergamon Press, New York, (1975).

DOI: 10.1016/b978-0-08-017883-7.50006-8

Google Scholar

[6] N. C. Giles, L. E. Halliburton, Native Defects in the Ternary Chalcopyrites, MRS Bulletin 23 (1998) 37.

DOI: 10.1557/s0883769400029079

Google Scholar

[7] B. H. Bairamov, V. Yu. Ruď, Yu. V. Ruď, Properties of Dopants in ZnGeP2, CdGeAs2, AgGaS2 and AgGaSe2, MRS Bulletin 23 (1998) 41.

Google Scholar

[8] G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, K. Sato, Room Temperature Ferromagnetism in Novel Diluted Magnetic Semiconductor Cd1-xMnxGeP2, Jpn. J. Appl. Phys. 39 (2000) L949.

DOI: 10.1143/jjap.39.l949

Google Scholar

[9] S. Choi, G. B. Cha, S. C. Hong, S. Cho, Y. Kim, J. B. Ketterson, S. Y. Jeong, G. C. Yi, Room-temperature ferromagnetism in chalcopyrite Mn-doped ZnSnAs2 single crystals, Solid Sate Commun. 122 (2002) 165.

DOI: 10.1016/s0038-1098(02)00094-7

Google Scholar

[10] G. B. Cha, W. S. Yun, S. C. Hong, Magnetocrystalline anisotropy of pure magnetic semiconductors of MnGeP2 and MnGeAs2: A first-principles study, J. Mag. Magnet. Mater. 419 (2016) 202.

DOI: 10.1016/j.jmmm.2016.06.028

Google Scholar

[11] W. Feng, D. Xiao, J. Ding, Y. Yao, Three-dimensional topological insulators in I-III-VI2 and II-IV-V2 chalcopyrite semiconductors, Phys. Rev. Lett. 106 (2011) 016402.

Google Scholar

[12] S. Cho, S. Choi, G. B. Cha, S. C. Hong, Y. Kim, A. J. Freeman, J. B. Ketterson,Y. Park, H. M. Park, Synthesis of new pure ferromagnetic semiconductors: MnGeP2 and MnGeAs2, Solid State Commun., 129 (2004) 609.

DOI: 10.1016/j.ssc.2003.11.040

Google Scholar

[13] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molna´r, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Spintronics: a spin-based electronics vision for the future, Science 294 (2001) 1488.

DOI: 10.1126/science.1065389

Google Scholar

[14] G. A. Prinz, Magnetoelectronics, Science 282 (1998) 1660.

Google Scholar