Study of Structural, Electronic and Optical Properties of Lanthanum Doped Perovskite PZT Using Density Functional Theory

Article Preview

Abstract:

Ferroelectric materials of lanthanum (La) doped PbZrTiO3 (PLZT) were investigated via first principles study. The structural, electronic and optical properties of PLZT in tetragonal structure (P4mm space group) were performed in the framework of density functional theory (DFT) with generalized gradient approximation (GGA) and local density approximation (LDA) methods. The calculated results of structural properties of PLZT were seen to be approximately close to the experimental data. The results of the electronic part were covered with the calculation of energy band gap and density of states (DOS). The highest valence band (VB) which lies at the Fermi level (EF) was dominated by the O 2p at F point. The conduction band (CB) of PLZT occurred at G point, which was primarily dominated by Ti 3d mixed at Pb and La p-state. Whereas the optical part was covered with the refractive index and absorption. The refractive index, n and the extinction coefficient, k were calculated with respect to photon energy. Those results obtained could be such a good prediction in studying parameters and properties of new materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-132

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Płońska, Z. Surowiak, Piezoelectric Properties Of X / 65 / 35 PLZT Ceramics Depended Of The Lanthanum ( X ) Ions Contents, J. Phys. IV, 27 (2006) 207-211.

DOI: 10.1051/jp4:2006137028

Google Scholar

[2] T. Chen, H. Wang, T. Zhang, G. Wang, J. Zhou, J. Zhang, Y. Liu, Piezoelectric behavior of (1−x)K0. 50Na0. 50NbO3−xBa0. 80Ca0. 20ZrO3 lead-free ceramics, Ceram. Int., 39(6) (2013) 6619-6622.

DOI: 10.1016/j.ceramint.2013.01.098

Google Scholar

[3] M. Koochaksaraee, Comparison Of Optical Properties Of PLZT ( 96 / 4 / 65 / 35 ) And PZT ( 65 / 35 ) Ceramics In Rhombohedral Phase, Int. J. Eng. Res. Appl. 3(1) (2013) 399-402.

Google Scholar

[4] J. A. Gallagher, H. R. Jo, C. S. Lynch, Large-field dielectric loss in relaxor ferroelectric PLZT, 035007.

DOI: 10.1088/0964-1726/23/3/035007

Google Scholar

[5] Q. Zheng, T. Yang, K. Wei, J. Wang, X. Yao, Effect of Sn : Ti variations on electric filed induced AFE – FE phase transition in PLZST antiferroelectric ceramics, Ceram. Int., 38 (2012) S9-S12.

DOI: 10.1016/j.ceramint.2011.04.037

Google Scholar

[6] P. William, Materials Theory Group Epitaxial strain tunes polarization and band gap in SnTiO3 Argonne National Laboratory, (2012) 4325.

Google Scholar

[7] R. Cohen, First Principles Theories of Piezoelectric Materials I . The Origin of Piezoelectricity and Ferroelectricity : What we have learned from first-principles studies (1954) 1-22.

Google Scholar

[8] T. Kühnlein, A. Stiegelschmitt, A. Roosen, M. Rauscher, Development of a model for the sintering of PZT multilayer ceramics and their dielectric properties, J. Eur. Ceram. Soc., 33(5) (2013) 991-1000.

DOI: 10.1016/j.jeurceramsoc.2012.10.018

Google Scholar

[9] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie, 220(5/6) (2005) 567-570.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[10] A. Janotti, C. G. Van de Walle, LDA + U and Hybrid Functional Calculations for Defects in ZnO, SnO2, and TiO2, Adv. Calc, Defects Mater. Electron. Struct. Methods, 804 (2011) 155-164.

DOI: 10.1002/9783527638529.ch9

Google Scholar

[11] M. F. M. Taib, M. K. Yaakob, O. H. Hassan, M. Z. A. Yahya, Structural, Electronic, and Lattice Dynamics of PbTiO 3 , SnTiO 3 , and SnZrO 3 : A Comparative First-Principles Study, Integr. Ferroelectr., 142(1) (2013) 119-127.

DOI: 10.1080/10584587.2013.780528

Google Scholar

[12] M. K. Yaakob, M. F. M. Taib, M. S. M. Deni, M. Z. A. Yahya, Ab Initio Studies on the Structural and Electronic Properties of Bismuth Ferrite Based on Ferroelectric Hexagonal Phase and Paraelectric Orthorhombic Phase, Integr. Ferroelectr., 155 (2014).

DOI: 10.1080/10584587.2014.905306

Google Scholar

[13] A. Bouhemadou, R. Khenata, M. Chegaar, S. Maabed, First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg3, Phys. Lett. A, 371(4) (2007) 337-343.

DOI: 10.1016/j.physleta.2007.06.030

Google Scholar

[14] A. K. Kalyani, L. K. V, A. R. James, A. Fitch, R. Ranjan, Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique, J. Phys. Condens. Matter, 27(7) (2015) 072201.

DOI: 10.1088/0953-8984/27/7/072201

Google Scholar

[15] J. Baedi, M. R. Benam, M. Majidiyan, First-principles study of the effect of La substitution on the electronic and optical properties of Pb(Zr x Ti 1− x )O 3 crystal, Phys. Scr. 81 (2010) 035701.

DOI: 10.1088/0031-8949/81/03/035701

Google Scholar

[16] V. Batra, S. Kotru, M. Varagas, and C. V. Ramana, Optical constants and band gap determination of Pb0. 95La0. 05Zr0. 54Ti0. 46O3 thin films using spectroscopic ellipsometry and UV-visible spectroscopy, Opt. Mater. (Amst). 49 (2015) 123–128.

DOI: 10.1016/j.optmat.2015.08.019

Google Scholar