Intrinsic Electronic Structures and Optical Anisotropy of α- and β-Phase Copper Phthalocyanine Molecular Crystals

Article Preview

Abstract:

Electronic structures and optical anisotropy of α- and β-phase copper phthalocyanine (CuPc) molecular crystals have been systemically investigated by first-principles calculations based on Density Functional Theory (DFT). Both crystals were shown to be small gap organic semiconductors with relatively flat and dispersionless bands. The α-CuPc was a direct band gap semiconductor, whereas the β-CuPc was an indirect band gap semiconductor. The analysis of Partial Density of States (PDOS) showed that the top of valance band was mainly contributed by N 2p and C 2p states; the bottom of the conduction band was mainly contributed by N 2p, C 2p and Cu 3d states. The interband optical properties, such as the complex dielectric function, absorption coefficient and complex refractive index, showed a high degree of anisotropy that can be traced to the unique structures of these molecular crystals. The calculated dielectric function for α-CuPc in the low energy region was consistent with the experiment results proposed in the literature. These calculations provided particular interpretations on electronic structure and optical properties of α- and β-CuPc organic semiconductors that were critical to optoelectronics, which would promote the applications of these materials in semiconductor optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-141

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ghosh, N. Padma, R. Tewari, A. K. Debnath, Structural, optical, and electrical properties of in situ synthesized ZnO−CuPc nanocomposites, J. Phys. Chem. C 118 (2014) 691-699.

DOI: 10.1021/jp4059609

Google Scholar

[2] W. Mekprasart, N. Vittayakorn, W. Pecharapa, Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous Rhodamine B, Mater. Res. Bull. 47(11) (2012) 3114-3119.

DOI: 10.1016/j.materresbull.2012.08.024

Google Scholar

[3] H. Kumar, P. Kumar, N. Chaudhary, R. Bhardwaj, S. Chand, S. C. Jain, V. Kumar, Effect of temperature on the performance of CuPc/C60 photovoltaic device, J. Phys. D: Appl. Phys. 42(1) (2009) 015102 1-7.

DOI: 10.1088/0022-3727/42/1/015102

Google Scholar

[4] N. N. Wang, J. S. Yu, Z. L. Yuan, Y. D. Jiang, Effect of annealing copper phthalocyanine on the performance of interdigitated bulk-heterojunction organic photovoltaic cells, Eur. Phys. J. Appl. Phys. 58 (2012) 20201 1-6.

DOI: 10.1051/epjap/2012110404

Google Scholar

[5] T. Shaymurat, Q. Tang, Y. Tong, L. Dong, Y. Liu, Gas Dielectric Transistor of CuPc Single Crystalline Nanowire for SO2 Detection Down to Sub-ppm Levels at Room Temperature, Adv. Mater. 25(16) (2013) 2269-2273.

DOI: 10.1002/adma.201204509

Google Scholar

[6] S. Karan, B. Mallik, Nanostructured organic-inorganic photodiodes with high rectification ratio, Nanotechnol. 19(49) (2008) 495202 1-11.

DOI: 10.1088/0957-4484/19/49/495202

Google Scholar

[7] N. Padma, Aditee Joshi, Ajay Singh, S. K. Deshpande, D. K. Aswal, S. K. Gupta, J. V. Yakhmi, NO2 sensors with room temperature operation and long term stability using copper phthalocyanine thin films, Sensors Actuat. B 143(1) (2009) 246-252.

DOI: 10.1016/j.snb.2009.07.044

Google Scholar

[8] G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, Y. Huang, Femtosecond nonlinear optical response of metallophthalocyanine films, Solid. State. Commun. 118(12) (2001) 633-638.

DOI: 10.1016/s0038-1098(01)00183-1

Google Scholar

[9] G. de la Torre, P. Vázquez, F. Agulló-López, T. Torres, Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds, Chem. Rev. 104(9) (2004) 3723-3750.

DOI: 10.1021/cr030206t

Google Scholar

[10] W. Wu, Modelling copper-phthalocyanine/cobalt-phthalocyanine chains: towards magnetic quantum metamaterials, J. Phys.: Condens. Matter 26(29) (2014) 296002 1-5.

DOI: 10.1088/0953-8984/26/29/296002

Google Scholar

[11] R. Murdey, N. Sato, In situ conductance measurements of copper phthalocyanine thin film growth on sapphire.

DOI: 10.1063/1.3600065

Google Scholar

[1] J. Chem. Phys. 134(23) (2011) 234702 1-6.

Google Scholar

[12] M. D. Pirriera, J. Puigdollers, C. Voz, M. Stella, J. Bertomeu, R. Alcubilla, Optoelectronic properties of CuPc thin films deposited at different substrate temperatures, J. Phys. D: Appl. Phys. 42(14) (2009) 145102 1-5.

DOI: 10.1088/0022-3727/42/14/145102

Google Scholar

[13] A. Chowdhury, B. Biswas, M. K. Sanyal, B. Mallik, Organic rectifiers grown from metal phthalocyanines seeds: effects of grain growth and grain orientation on the rectification, Sci. Adv. Mater. 5(12) (2013) 1-10.

DOI: 10.1166/sam.2013.1651

Google Scholar

[14] C. Defeyt, P. Vandenabeele, B. Gilbert, J. V. Pevenage, R. Cloots, D. Strivay, Contribution to the identification of α-, β- and ε-copper phthalocyanine blue pigments in modern artists' paints by X-ray powder diffraction, attenuated total reflectance micro-fourier transform infrared spectroscopy and micro-Raman spectroscopy, J. Raman Spectrosc. 43(11) (2012).

DOI: 10.1002/jrs.4125

Google Scholar

[15] T. V. Basova, V. G. Kiselev, B. E. Schuster, H. Peisert, T. Chassé, Experimental and theoretical investigation of vibrational spectra of copper phthalocyanine: polarized single-crystal Raman spectra, isotope effect and DFT calculations, J. Raman Spectrosc. 40(12) (2009).

DOI: 10.1002/jrs.2375

Google Scholar

[16] A. Hoshino, Y. Takenaka, H. Miyaji, Redetermination of the crystal structure of α-copper phthalocyanine grown on KCl, Acta Cryst. B 59 (2003) 393-403.

DOI: 10.1107/s010876810300942x

Google Scholar

[17] O. D. Gordan, M. Friedrich, D. R. T. Zahn, The anisotropic dielectric function for copper phthalocyanine thin films, Org. Electron. 5(6) (2004) 291-297.

DOI: 10.1016/j.orgel.2004.10.001

Google Scholar

[18] M. Fronk, B. Bräuer, G. Salvan, D. R. T. Zahn, Molecular alignment in a-CuPc films probed by reflection anisotropy spectroscopy, J. Mol. Struct. 1073 (2014) 82-86.

DOI: 10.1016/j.molstruc.2014.05.001

Google Scholar

[19] J. Zhou, Q. Wang, Q. Sun, P. Jena, Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine, Phys. Rev. B 81(8) (2010) 085442 1-7.

DOI: 10.1103/physrevb.81.085442

Google Scholar

[20] C. J. Brown, Crystal structure of β-copper phthalocyanine, J. Chem. Soc. A. (1968) 2488-2493.

Google Scholar

[21] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18) (1996) 3865-3867; 78, 1396 (E) (1997).

DOI: 10.1103/physrevlett.78.1396

Google Scholar

[22] L. M. Yang, P. Ravindran, P. Vajeeston, S. Svelle, M. Tilset, A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties, Micropor. Mesopor. Mat. 175 (2013) 50-58.

DOI: 10.1016/j.micromeso.2013.03.020

Google Scholar

[23] Z. Zhao, Z. Li, Z. Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Phys. Chem. Chem. Phys. 13 (2011) 4746-4753.

DOI: 10.1039/c0cp01871f

Google Scholar

[24] L. Lozzi, S. Santucci, S. La Rosa, B. Delley, S. Picozzi, Electronic structure of crystalline copper phthalocyanine, J. Chem. Phys. 121(4) (2004) 1883-1889.

DOI: 10.1063/1.1766295

Google Scholar

[25] J. Zhai, A. Wan, D. Yu, T. Ren, Structural, electronic, and optical properties of ordered Si1-xGexC alloys: A first principles study, J. Alloy. Compd. 632 (2015) 629-633.

DOI: 10.1016/j.jallcom.2015.01.212

Google Scholar

[26] Q. B. Wang, C. Zhou, L. Chen, X. C. Wang, K. H. He, The optical properties of NiAs phase ZnO under pressure calculated by GGA+U method, Opt. Commun. 312 (2014) 185-191.

DOI: 10.1016/j.optcom.2013.09.035

Google Scholar

[27] C. Lei, Z. Yang, B. Zhang, M. H. Lee, Q. Jing, Z. Chen, X. C. Huang, Y. Wang, S. Pan, M. R. S. A. Janjua, The influence of hydrogen bonding on the nonlinear optical properties of a semiorganic material NH4B [D-(+)-C4H4O5]2·H2O: a theoretical perspective, Phys. Chem. Chem. Phys. 16(37) (2014).

DOI: 10.1039/c4cp02539c

Google Scholar

[28] X. Y. Wang, J. B. Zheng, X. J. Li, C. D. Cao, Electronic Structures and Optical Properties of β-PTCDA Based on the First-Principles Investigation, Acta Photonica Sinica, 45(6) (2016) 1-8.

Google Scholar

[29] M. Khan, J. N. Xu, N. Chen, W. B. Cao, First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2, J. Alloy. Compd. 513 (2012) 539-545.

DOI: 10.1016/j.jallcom.2011.11.002

Google Scholar

[30] Q. B. Wang, C. Zhou, L. Chen, X. C. Wang, K. H. He, The optical properties of NiAs phase ZnO under pressure calculated by GGA+U method, Opt. Commun. 312 (2014) 185-191.

DOI: 10.1016/j.optcom.2013.09.035

Google Scholar

[31] M. M. El-Nahass, K. F. Abd-El-Rahman, A. A. A. Darwish, Fourier-transform infrared and UV- vis spectroscopes of nickel phthalocyanine thin films, Mater. Chem. Phys. 92(1) (2005) 185-189.

DOI: 10.1016/j.matchemphys.2005.01.008

Google Scholar

[32] W. Y. Tong, H. Y. Chen, A. B. Djurišić, A. M. C. Ng, H. Wang, S. Gwo, W. K. Chan, Infrared photoluminescence from α- and β-copper phthalocyanine nanostructures, Opt. Mater. 32(9) (2010) 924-927.

DOI: 10.1016/j.optmat.2010.01.026

Google Scholar