[1]
M. Ghosh, N. Padma, R. Tewari, A. K. Debnath, Structural, optical, and electrical properties of in situ synthesized ZnO−CuPc nanocomposites, J. Phys. Chem. C 118 (2014) 691-699.
DOI: 10.1021/jp4059609
Google Scholar
[2]
W. Mekprasart, N. Vittayakorn, W. Pecharapa, Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous Rhodamine B, Mater. Res. Bull. 47(11) (2012) 3114-3119.
DOI: 10.1016/j.materresbull.2012.08.024
Google Scholar
[3]
H. Kumar, P. Kumar, N. Chaudhary, R. Bhardwaj, S. Chand, S. C. Jain, V. Kumar, Effect of temperature on the performance of CuPc/C60 photovoltaic device, J. Phys. D: Appl. Phys. 42(1) (2009) 015102 1-7.
DOI: 10.1088/0022-3727/42/1/015102
Google Scholar
[4]
N. N. Wang, J. S. Yu, Z. L. Yuan, Y. D. Jiang, Effect of annealing copper phthalocyanine on the performance of interdigitated bulk-heterojunction organic photovoltaic cells, Eur. Phys. J. Appl. Phys. 58 (2012) 20201 1-6.
DOI: 10.1051/epjap/2012110404
Google Scholar
[5]
T. Shaymurat, Q. Tang, Y. Tong, L. Dong, Y. Liu, Gas Dielectric Transistor of CuPc Single Crystalline Nanowire for SO2 Detection Down to Sub-ppm Levels at Room Temperature, Adv. Mater. 25(16) (2013) 2269-2273.
DOI: 10.1002/adma.201204509
Google Scholar
[6]
S. Karan, B. Mallik, Nanostructured organic-inorganic photodiodes with high rectification ratio, Nanotechnol. 19(49) (2008) 495202 1-11.
DOI: 10.1088/0957-4484/19/49/495202
Google Scholar
[7]
N. Padma, Aditee Joshi, Ajay Singh, S. K. Deshpande, D. K. Aswal, S. K. Gupta, J. V. Yakhmi, NO2 sensors with room temperature operation and long term stability using copper phthalocyanine thin films, Sensors Actuat. B 143(1) (2009) 246-252.
DOI: 10.1016/j.snb.2009.07.044
Google Scholar
[8]
G. Ma, L. Guo, J. Mi, Y. Liu, S. Qian, D. Pan, Y. Huang, Femtosecond nonlinear optical response of metallophthalocyanine films, Solid. State. Commun. 118(12) (2001) 633-638.
DOI: 10.1016/s0038-1098(01)00183-1
Google Scholar
[9]
G. de la Torre, P. Vázquez, F. Agulló-López, T. Torres, Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds, Chem. Rev. 104(9) (2004) 3723-3750.
DOI: 10.1021/cr030206t
Google Scholar
[10]
W. Wu, Modelling copper-phthalocyanine/cobalt-phthalocyanine chains: towards magnetic quantum metamaterials, J. Phys.: Condens. Matter 26(29) (2014) 296002 1-5.
DOI: 10.1088/0953-8984/26/29/296002
Google Scholar
[11]
R. Murdey, N. Sato, In situ conductance measurements of copper phthalocyanine thin film growth on sapphire.
DOI: 10.1063/1.3600065
Google Scholar
[1]
J. Chem. Phys. 134(23) (2011) 234702 1-6.
Google Scholar
[12]
M. D. Pirriera, J. Puigdollers, C. Voz, M. Stella, J. Bertomeu, R. Alcubilla, Optoelectronic properties of CuPc thin films deposited at different substrate temperatures, J. Phys. D: Appl. Phys. 42(14) (2009) 145102 1-5.
DOI: 10.1088/0022-3727/42/14/145102
Google Scholar
[13]
A. Chowdhury, B. Biswas, M. K. Sanyal, B. Mallik, Organic rectifiers grown from metal phthalocyanines seeds: effects of grain growth and grain orientation on the rectification, Sci. Adv. Mater. 5(12) (2013) 1-10.
DOI: 10.1166/sam.2013.1651
Google Scholar
[14]
C. Defeyt, P. Vandenabeele, B. Gilbert, J. V. Pevenage, R. Cloots, D. Strivay, Contribution to the identification of α-, β- and ε-copper phthalocyanine blue pigments in modern artists' paints by X-ray powder diffraction, attenuated total reflectance micro-fourier transform infrared spectroscopy and micro-Raman spectroscopy, J. Raman Spectrosc. 43(11) (2012).
DOI: 10.1002/jrs.4125
Google Scholar
[15]
T. V. Basova, V. G. Kiselev, B. E. Schuster, H. Peisert, T. Chassé, Experimental and theoretical investigation of vibrational spectra of copper phthalocyanine: polarized single-crystal Raman spectra, isotope effect and DFT calculations, J. Raman Spectrosc. 40(12) (2009).
DOI: 10.1002/jrs.2375
Google Scholar
[16]
A. Hoshino, Y. Takenaka, H. Miyaji, Redetermination of the crystal structure of α-copper phthalocyanine grown on KCl, Acta Cryst. B 59 (2003) 393-403.
DOI: 10.1107/s010876810300942x
Google Scholar
[17]
O. D. Gordan, M. Friedrich, D. R. T. Zahn, The anisotropic dielectric function for copper phthalocyanine thin films, Org. Electron. 5(6) (2004) 291-297.
DOI: 10.1016/j.orgel.2004.10.001
Google Scholar
[18]
M. Fronk, B. Bräuer, G. Salvan, D. R. T. Zahn, Molecular alignment in a-CuPc films probed by reflection anisotropy spectroscopy, J. Mol. Struct. 1073 (2014) 82-86.
DOI: 10.1016/j.molstruc.2014.05.001
Google Scholar
[19]
J. Zhou, Q. Wang, Q. Sun, P. Jena, Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine, Phys. Rev. B 81(8) (2010) 085442 1-7.
DOI: 10.1103/physrevb.81.085442
Google Scholar
[20]
C. J. Brown, Crystal structure of β-copper phthalocyanine, J. Chem. Soc. A. (1968) 2488-2493.
Google Scholar
[21]
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18) (1996) 3865-3867; 78, 1396 (E) (1997).
DOI: 10.1103/physrevlett.78.1396
Google Scholar
[22]
L. M. Yang, P. Ravindran, P. Vajeeston, S. Svelle, M. Tilset, A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties, Micropor. Mesopor. Mat. 175 (2013) 50-58.
DOI: 10.1016/j.micromeso.2013.03.020
Google Scholar
[23]
Z. Zhao, Z. Li, Z. Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Phys. Chem. Chem. Phys. 13 (2011) 4746-4753.
DOI: 10.1039/c0cp01871f
Google Scholar
[24]
L. Lozzi, S. Santucci, S. La Rosa, B. Delley, S. Picozzi, Electronic structure of crystalline copper phthalocyanine, J. Chem. Phys. 121(4) (2004) 1883-1889.
DOI: 10.1063/1.1766295
Google Scholar
[25]
J. Zhai, A. Wan, D. Yu, T. Ren, Structural, electronic, and optical properties of ordered Si1-xGexC alloys: A first principles study, J. Alloy. Compd. 632 (2015) 629-633.
DOI: 10.1016/j.jallcom.2015.01.212
Google Scholar
[26]
Q. B. Wang, C. Zhou, L. Chen, X. C. Wang, K. H. He, The optical properties of NiAs phase ZnO under pressure calculated by GGA+U method, Opt. Commun. 312 (2014) 185-191.
DOI: 10.1016/j.optcom.2013.09.035
Google Scholar
[27]
C. Lei, Z. Yang, B. Zhang, M. H. Lee, Q. Jing, Z. Chen, X. C. Huang, Y. Wang, S. Pan, M. R. S. A. Janjua, The influence of hydrogen bonding on the nonlinear optical properties of a semiorganic material NH4B [D-(+)-C4H4O5]2·H2O: a theoretical perspective, Phys. Chem. Chem. Phys. 16(37) (2014).
DOI: 10.1039/c4cp02539c
Google Scholar
[28]
X. Y. Wang, J. B. Zheng, X. J. Li, C. D. Cao, Electronic Structures and Optical Properties of β-PTCDA Based on the First-Principles Investigation, Acta Photonica Sinica, 45(6) (2016) 1-8.
Google Scholar
[29]
M. Khan, J. N. Xu, N. Chen, W. B. Cao, First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2, J. Alloy. Compd. 513 (2012) 539-545.
DOI: 10.1016/j.jallcom.2011.11.002
Google Scholar
[30]
Q. B. Wang, C. Zhou, L. Chen, X. C. Wang, K. H. He, The optical properties of NiAs phase ZnO under pressure calculated by GGA+U method, Opt. Commun. 312 (2014) 185-191.
DOI: 10.1016/j.optcom.2013.09.035
Google Scholar
[31]
M. M. El-Nahass, K. F. Abd-El-Rahman, A. A. A. Darwish, Fourier-transform infrared and UV- vis spectroscopes of nickel phthalocyanine thin films, Mater. Chem. Phys. 92(1) (2005) 185-189.
DOI: 10.1016/j.matchemphys.2005.01.008
Google Scholar
[32]
W. Y. Tong, H. Y. Chen, A. B. Djurišić, A. M. C. Ng, H. Wang, S. Gwo, W. K. Chan, Infrared photoluminescence from α- and β-copper phthalocyanine nanostructures, Opt. Mater. 32(9) (2010) 924-927.
DOI: 10.1016/j.optmat.2010.01.026
Google Scholar