Synthesis of MoS2/Graphene Hybrid for Electrochemical Detection and Catalytic Reduction of 4-Nitrophenol

Article Preview

Abstract:

Large amounts of nitroaromatic compounds are discharged into the natural environment, leading to environmental pollution. The detection and removal of nitroaromatic compounds are therefore important environmental issues. In this study, the hybrid of molybdenum disulfide (MoS2) and graphene (GR) was synthesized using a facile hydrothermal method. Sodium molybdate was selected as the precursors for MoS2. While thiourea was used as reductant and sulfur sources at the same time. Samples were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), N2 adsorption, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Raman microscope. Compared to pure MoS2, the obtained MoS2/GR hybrid showed improved activity for electrochemical detection and chemical reduction of 4-nitrophenol. The activity enhancement should be due to the addition of GR, which could improve the conductivity as well as provide more active sites. The MoS2/GR hybrid could therefore provide new multi-function catalyst for environment protection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-154

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. M. Mohamed, M. S. Al-Sharif, Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO2 photocatalysts synthesized by hybrid templates, Appl. Catal. B-Environ. 142 (2013) 432-441.

DOI: 10.1016/j.apcatb.2013.05.058

Google Scholar

[2] W. C. Peng, Y. Chen, S. D. Fan, F. B. Zhang, G. L. Zhang, X. B. Fan, Use of 4, 4 -Dinitrostilbene-2, 2 , -Disulfonic Acid Wastewater As a Raw Material for Paramycin Production, Environ. Sci. Technol. 44 (2010) 9157-9162.

DOI: 10.1021/es101950k

Google Scholar

[3] J. B. Kramer, S. Canonica, J. Hoigne, J. Kaschig, Degradation of fluorescent whitening agents in sunlit natural waters, Environ. Sci. Technol. 30 (1996) 2227-2234.

DOI: 10.1021/es950711a

Google Scholar

[4] D. L. Jiang, H. J. Zhao, S. Q. Zhang, R. John, Characterization of photoelectrocatalytic processes at nanoporous TiO2 film electrodes: Photocatalytic oxidation of glucose, J. Phys. Chem. B. 107 (2003) 12774-12780.

DOI: 10.1021/jp0307349

Google Scholar

[5] B. A. Donlon, E. Razoflores, J. A. Field, G. Lettinga, Toxicity of N-Substituted Aromatics to Acetoclastic Methanogenic Activity in Granular Sludge, Appl. Environ. Microb. 61 (1995) 3889-3893.

DOI: 10.1128/aem.61.11.3889-3893.1995

Google Scholar

[6] R. N. Rao, N. Venkateswarlu, S. Khalid, R. Narsimba, S. Sridhar, Use of solid-phase extraction, reverse osmosis and vacuum distillation for recovery of aromatic sulfonic acids from aquatic environment followed by their determination using liquid chromatography-electrospray ionization tandem mass spectrometry, J. Chromatogr. A. 1113 (2006).

DOI: 10.1016/j.chroma.2006.01.127

Google Scholar

[7] T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H-2 evolution from MoS2 nanocatalysts, Science, 317 (2007) 100-102.

DOI: 10.1126/science.1141483

Google Scholar

[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[9] Y. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong, H. J. Dai, MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction, J. Am. Chem. Soc. 133 (2011) 7296-7299.

DOI: 10.1021/ja201269b

Google Scholar

[10] Q. J. Xiang, J. G. Yu, M. Jaroniec, Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H-2 Production Activity of TiO2 Nanoparticles, J. Am. Chem. Soc. 134 (2012) 6575-6578.

DOI: 10.1021/ja302846n

Google Scholar

[11] W. S. Hummers Jr, R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar