Study on the Preparation and Characterization of Carboxyl Terminated Poly(L-Lactic Acid) (PLLA) Prepolymers

Article Preview

Abstract:

The carboxyl terminated poly (L-lactic acid) (PLLA) prepolymers were prepared via polycondensation of L-lactic acid and 1,6-adipic acid (end capping agent) under the catalyst of stannous octoate. The effects of synthetic condition, such as reaction temperature, amount of catalyst, content of the end capping agent, etc, on the molecular weight of PLLA were discussed. Fourier transform infrared and 1H nuclear magnetic resonance were used to characterize the PLLA prepolymers. The results indicated that the polycondensation was performed under an optimum reaction condition as following: the amount of the catalyst was 500 ppm based on the mass of lactic acid, the amount of the end capping agent was 1% (the molar amount of the lactic acid), and the polymerization temperature was 170 °C. The viscosity-average molecular weight of the product reached 2.826×104 at this polymerization temperature and the yield was 73.34%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-170

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. M. Rasal, A. V. Janorkar, D. E. Hirt. Poly (lactic acid) modifications. Prog. Polym. Sci. 35(3) (2010) 338-356.

DOI: 10.1016/j.progpolymsci.2009.12.003

Google Scholar

[2] L. T. Lim, R. Auras, M. Rubino. Processing technologies for poly (lactic acid). Prog. Polym. Sci. 33(8) (2010) 820-852.

DOI: 10.1016/j.progpolymsci.2008.05.004

Google Scholar

[3] A. J. Lasprilla, G. A. Martinez, B. H. Lunelli, A. L. Jardini, R. Maciel Filho, Poly-lactic acid synthesis for application in biomedical devices—A review. Biotech. Adv. 30(1) (2012) 321-328.

DOI: 10.1016/j.biotechadv.2011.06.019

Google Scholar

[4] F. Carrasco, P. Pagès, J. Gámez-Pérez, O. O. Santana, M. L. Maspoch. Processing of poly(lactic acid) Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degr. Stabil. 95(2) (2010) 116-125.

DOI: 10.1016/j.polymdegradstab.2009.11.045

Google Scholar

[5] D. Garlotta. A literature review of poly (lactic acid). J. Polym. Envir. 9(2) (2001) 63-84.

Google Scholar

[6] J. Tuominen, J. V. Seppala. Synthesis and characterization of lactic acid based poly(ester-amide). Macromol. 33(10) (2000) 3530-3535.

DOI: 10.1021/ma991676l

Google Scholar

[7] J. S. Wiggins, M. K. Hassan, K. A. Mauritz, R. F. Storey. Hydrolytic degradation of poly(d, l -lactide) as a function of end group: Carboxylic acid vs. hydroxyl. Polym. 47(6) (2006) 1960-(1969).

DOI: 10.1016/j.polymer.2006.01.021

Google Scholar

[8] Y. Zhang, X. L. Wang, Y. Z. Wang, M. H. Qu. Microwave-assisted single-step synthesis of poly(L-lactic acid)-poly(ethylene glycol) copolymers. J. Macromol. Sci. Part A, 46(6) (2009) 631-635.

DOI: 10.1080/10601320902851991

Google Scholar

[9] K. D. Nelson, A. Romero, P. Waggoner, B. Crow, A. Borneman, G. M. Smith. Technique paper for wet-spinning poly(L-lactic acid) and poly(D, L-lactide-co-glycolide) monofilament fibers. Tissue Eng. 9(6) (2003) 1323-1330.

DOI: 10.1089/10763270360728233

Google Scholar

[10] T. Kemala, E. Budianto, B. Soegiyono. Preparation and characterization of microspheres based on blend of poly(lactic acid) and poly(ɛ-caprolactone) with poly(vinyl alcohol) as emulsifier. Arabian J. Chem. 5(1) (2012) 103-108.

DOI: 10.1016/j.arabjc.2010.08.003

Google Scholar

[11] H Fukuzaki, Y Aiba, M Yoshida, M Asano, M Kumakura. Synthesis of biodegradable poly(L-lactic acid-co-D, L-mandelic acid) with relatively low molecular weight. Die makromol. Chem. 190(10) (2003) 2407-2415.

DOI: 10.1002/macp.1989.021901007

Google Scholar

[12] H. Fukuzaki, M. Yoshida, M. Asano, et al. Synthesis of low-molecular-weight copoly( l -lactic acid/ɛ-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polym. 31(10) (1990).

DOI: 10.1016/0032-3861(90)90031-s

Google Scholar

[13] T. Shimanouchi, S. Ueno, K. Shidahara, Y. Kimura. Rapid conversion of glycerol to lactic acid under alkaline hydrothermal conditions, by using a continuous flow reaction system. Chem. Lett. 43(4) (2014) 535-537.

DOI: 10.1246/cl.131160

Google Scholar

[14] K. Hiltunen, M. Härkönen, J. V. Seppälä, T. Väänänen. Synthesis and characterization of lactic acid based telechelic prepolymers. Macromol. 29(27) (1996) 8677-8682.

DOI: 10.1021/ma960402k

Google Scholar

[15] X. L. Lu, X. Q. Lv, Z. J. Sun, Y. F. Zheng. Nanocomposites of poly (l-lactide) and surface-grafted TiO 2 nanoparticles: synthesis and characterization. European Polym. J. 44(8) (2008) 2476-2481.

DOI: 10.1016/j.eurpolymj.2008.06.002

Google Scholar

[16] H. H. Chuah, D. Lin-Vien, U. Soni. Poly(trimethylene terephthalate) molecular weight and aark–houwink equation. Polym. 42(16) (2001) 7137-7139.

DOI: 10.1016/s0032-3861(01)00043-x

Google Scholar

[17] J. Zhang, S. B. Yang, D. Han. Comparison of tin and its two chemical compounds as catalyst in direct polycondensation process of polylactic acid. Chem. Bioeng. 27(1) (2001) 30-32.

Google Scholar

[18] J. Kylmä, J. Tuominen, A. Helminen, J. Seppälä. Chain extending of lactic acid oligomers. Effect of 2, 2'-bis(2-oxazoline) on 1, 6-hexamethylene diisocyanate linking reaction. Polym. 42(8) (2001) 3333-3343.

DOI: 10.1016/s0032-3861(00)00751-5

Google Scholar

[19] J. S. Liu, C. Peizhen, H. H. Jiang, L. B. Chen. Synthesis and chain extension of hydroxyl-terminated poly(lactic acid) oligomers and application in the blends. Poly1m. Comp. 34(2) (2013) 305-312.

DOI: 10.1002/pc.22406

Google Scholar