PID Parameters Optimization of Pressure and Phear Testing Controller Based on CLPSO Algorithm

Article Preview

Abstract:

This paper presents an improved algorithm which is Comprehensive Learning Particle Swarm Optimization(CLPSO).CLPSO utilizes a new learning strategy have achieve the goal to accelerate the convergence of the classical PSO.CLPSO algorithm is effective to optimize PID controller’s parameter.The simulation results show its better performance than traditional ways in the PID parameter optimization of a hydraulic system controller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-109

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang W, Zhang J T, Chai T Y. A survey of advanced PID parameter tuning methods[J]. Acta Automatica Sinica, 2000, 26(3): 347-355.

Google Scholar

[2] Liang J J, Qin A K, Suganthan P N, et . al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans Evol Comput, 2006, 10(3): 281-294.

DOI: 10.1109/tevc.2005.857610

Google Scholar

[3] Kennedy,J., Eberhart, R, C . Particle Swarm Optimization . In: Proc. of IEEE International Conf. on Neural Networks, Pearth, Austrailia, pp, 1924-1948. (2005).

Google Scholar

[4] Liang, J, J, Qin A, K, Suganthan, P, N Bhaskaar, S Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10(3), 281-295(2006).

DOI: 10.1109/tevc.2005.857610

Google Scholar

[5] R H jin, Z H yuan, J P Jun, Y Fan, J J Li, The pattern synthesis of antennas based on a modified PSO algorithm[J]. Chinese Journal of Radio Science, 2006, 21(6): 873-878.

Google Scholar

[6] Turkington D H, Cooke N, Moss P J , et al. Dvelopment of a design procedure for bridges on lead-rubber bearings. Engineering Structures, 1989, 11(1)2-8.

DOI: 10.1016/0141-0296(89)90026-6

Google Scholar

[7] Hu Shousong Automatic Control Theory (Version 4)[M]. Beijing: Science Press, (2001).

Google Scholar

[8] Lin Lin Ou, Yan Ying Gu, Wei Dong Zhang. The optimal PID parameter tuning method bases on gain margin and phase margin[J]. Control theory and applications, 2007,24(5): 837~840.

Google Scholar

[9] Huang Zhonglin. Control System MATLAB Calculation and Simulation(Version 2)[M]. Beijing: National Defence Industry Press,(2004).

Google Scholar

[10] Takahiro S, Kenko U. Gain Scheduling control For Electro-hydraulic Servo System Considering Time-delay Modeling Erro[C]. Proceeding of the 2004. IEEE International, 2004(2): 1709~1716.

DOI: 10.1109/cca.2004.1387623

Google Scholar

[11] Xu Xiaoping, QIAN Fucai, WAN Feng. Novel method of system identification based on modified particle swarm optimization algorithm[J]. Systems Engineering and Electronic, 200e. 30(11): 2231~2236.

Google Scholar