Decoloured Novatein® and PLA Blends Compatibilized with Itaconic Anhydride

Article Preview

Abstract:

Poly (lactic acid) (PLA) was modified through free radical grafting of itaconic anhydride to create reactive side-chain groups. Modified PLA was blended with Decoloured Novatein® (DNTP), a thermoplastic protein material using reactive extrusion to produce a degradable material with improved properties compared to neat Decoloured Novatein®. Varying ratios of blends were prepared. Blending DNTP with PLA was found to increase tensile strength between 22% to 538% and modulus between 201 GPa to 3193 GPa, whereas the strain at break decreased between 80% to 94% depending on the blend ratio. The glass transition temperature of the blends which was measured as the tan δ peak, also revealed an increase when compared to neat DNTP. Scanning electron microscope revealed an enhanced interfacial adhesion between the two phases in the blends with PLA-g-IA suggesting a more homogenous microstructure. The results show the possibility and feasibility of blending DNTP with PLA for use in agricultural and packaging applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-13

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sue, H.-J., S. Wang, and J.-L. Jane, Morphology and mechanical behaviour of engineering soy plastics. Polymer, 1997. 38(20): pp.5035-5040.

DOI: 10.1016/s0032-3861(97)00048-7

Google Scholar

[2] Vaidya, U.R. and M. Bhattacharya, Properties of blends of starch and synthetic polymers containing anhydride groups. Journal of applied polymer science, 1994. 52(5): pp.617-628.

DOI: 10.1002/app.1994.070520505

Google Scholar

[3] Mohamed, A.A., et al., Thermal characteristics of polylactic acid/wheat gluten blends. Journal of food quality, 2006. 29(3): pp.266-281.

DOI: 10.1111/j.1745-4557.2006.00073.x

Google Scholar

[4] Huneault, M.A. and H. Li, Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 2007. 48(1): pp.270-280.

DOI: 10.1016/j.polymer.2006.11.023

Google Scholar

[5] Ku‐Marsilla, K. and C. Verbeek, Compatibilization of Protein Thermoplastics and Polybutylene Succinate Blends. Macromolecular Materials and Engineering, 2015. 300(2): pp.161-171.

DOI: 10.1002/mame.201400141

Google Scholar

[6] Marsilla, K.K. and C. Verbeek, Modification of poly (lactic acid) using itaconic anhydride by reactive extrusion. European Polymer Journal, 2015. 67: pp.213-223.

DOI: 10.1016/j.eurpolymj.2015.03.054

Google Scholar

[7] Gorrasi, G. and R. Pantani, Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polymer degradation and stability, 2013. 98(5): pp.1006-1014.

DOI: 10.1016/j.polymdegradstab.2013.02.005

Google Scholar

[8] Auras, R., B. Harte, and S. Selke, An overview of polylactides as packaging materials. Macromolecular bioscience, 2004. 4(9): pp.835-864.

DOI: 10.1002/mabi.200400043

Google Scholar

[9] Zhang, J., et al., Morphology and properties of soy protein and polylactide blends. Biomacromolecules, 2006. 7(5): pp.1551-1561.

Google Scholar

[10] Wang, N., J. Yu, and X. Ma, Preparation and characterization of thermoplastic starch/PLA blends by one‐step reactive extrusion. Polymer International, 2007. 56(11): pp.1440-1447.

DOI: 10.1002/pi.2302

Google Scholar

[11] Suyatma, N.E., et al., Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. Journal of Polymers and the Environment, 2004. 12(1): pp.1-6.

DOI: 10.1023/b:jooe.0000003121.12800.4e

Google Scholar

[12] Verbeek, C.J.R., M.C. Lay, and A.W.K. Low, Methods of manufacturing plastic materials from decolorized blood protein. 2013, Google Patents.

Google Scholar

[13] Low, A., Decoloured bloodmeal based bioplastic. 2012, University of Waikato.

Google Scholar

[14] Hernandez‐Izquierdo, V. and J. Krochta, Thermoplastic processing of proteins for film formation-a review. Journal of food science, 2008. 73(2).

DOI: 10.1111/j.1750-3841.2007.00636.x

Google Scholar

[15] Gennadios, A., Protein-based films and coatings. 2002: CRC Press.

Google Scholar

[16] Zhang, J., P. Mungara, and J.-l. Jane, Mechanical and thermal properties of extruded soy protein sheets. Polymer, 2001. 42(6): pp.2569-2578.

DOI: 10.1016/s0032-3861(00)00624-8

Google Scholar

[17] Pickering, K.L., et al., Plastics material. 2012, Google Patents.

Google Scholar

[18] Verbeek, C.J.R., et al., Processability and mechanical properties of bioplastics produced from decoloured bloodmeal. Advances in Polymer Technology, (2017).

DOI: 10.1002/adv.21868

Google Scholar

[19] Smith, M.J. and C.J. Verbeek, The relationship between morphology development and mechanical properties in thermoplastic protein blends. Advances in Polymer Technology, (2017).

DOI: 10.1002/adv.21847

Google Scholar

[20] Marsilla, K. and C.J.R. Verbeek, Properties of Bloodmeal/Linear Low‐density Polyethylene Blends Compatibilized with Maleic Anhydride Grafted Polyethylene. Journal of Applied Polymer Science, 2013. 130(3): pp.1890-1897.

DOI: 10.1002/app.39323

Google Scholar

[21] John, J. and M. Bhattacharya, Properties of reactively blended soy protein and modified polyesters. Polymer international, 1999. 48(11): pp.1165-1172.

DOI: 10.1002/(sici)1097-0126(199911)48:11<1165::aid-pi286>3.0.co;2-l

Google Scholar

[22] Zhu, R., H. Liu, and J. Zhang, Compatibilizing effects of maleated poly (lactic acid)(PLA) on properties of PLA/Soy protein composites. Industrial & Engineering Chemistry Research, 2012. 51(22): pp.7786-7792.

DOI: 10.1021/ie300118x

Google Scholar

[23] Zhong, Z. and X.S. Sun, Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer, 2001. 42(16): pp.6961-6969.

DOI: 10.1016/s0032-3861(01)00118-5

Google Scholar

[24] Huang, J., et al., Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate. Journal of applied polymer science, 2004. 93(2): pp.624-629.

DOI: 10.1002/app.20478

Google Scholar

[25] Walallavita, A., C.J. Verbeek, and M. Lay. Blending Novatein® thermoplastic protein with PLA for carbon dioxide assisted batch foaming. in AIP Conference Proceedings. 2016. AIP Publishing.

DOI: 10.1063/1.4942311

Google Scholar

[26] Wang, C., C. Carriere, and J. Willett, Processing, mechanical properties, and fracture behavior of cereal protein/poly (hydroxyl ester ether) blends. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(19): pp.2324-2332.

DOI: 10.1002/polb.10250

Google Scholar

[27] Sharabasht, M.M. and R.L. Guile, Copolymerization Parameters of Itaconic Anhydride in Free-Radical Polymerization. Journal of Macromolecular Science: Part A-Chemistry, 1976. 10(6): pp.1039-1054.

DOI: 10.1080/00222337608061235

Google Scholar

[28] Okuda, T., et al., Renewable biobased polymeric materials: facile synthesis of itaconic anhydride-based copolymers with poly (L-lactic acid) grafts. Macromolecules, 2012. 45(10): pp.4166-4174.

DOI: 10.1021/ma300387j

Google Scholar

[29] Fischer, L. and F. Peissker, A covalent two-step immobilization technique using itaconic anhydride. Applied microbiology and biotechnology, 1998. 49(2): pp.129-135.

DOI: 10.1007/s002530051148

Google Scholar

[30] Low, A., C.J.R. Verbeek, and M.C. Lay, Treating Bloodmeal with Peracetic Acid to Produce a Bioplastic Feedstock. Macromolecular Materials and Engineering, 2014. 299(1): pp.75-84.

DOI: 10.1002/mame.201200447

Google Scholar

[31] Hicks, T.M., et al., The role of peracetic acid in bloodmeal decoloring. Journal of the American Oil Chemists' Society, 2013. 90(10): pp.1577-1587.

DOI: 10.1007/s11746-013-2304-2

Google Scholar

[32] Properties, A.S.D.o.M. Standard test method for tensile properties of plastics. 1996. American Society for Testing and Materials.

Google Scholar

[33] ISO, E., 179-1 (2010).". Plastics. Determination of Charpy impact properties. Part. 1.

Google Scholar

[34] Willemse, R., et al., Co-continuous morphologies in polymer blends: a new model. Polymer, 1998. 39(24): pp.5879-5887.

DOI: 10.1016/s0032-3861(97)10200-2

Google Scholar

[35] Xie, H.-Q., J. Xu, and S. Zhou, Polymer blends with two kinds of elastomeric ionomers. Polymer, 1991. 32(1): pp.95-102.

DOI: 10.1016/0032-3861(91)90568-4

Google Scholar

[36] Menczel, J.D. and R.B. Prime, Thermal analysis of polymers: fundamentals and applications. 2014: John Wiley & Sons.

Google Scholar

[37] Sumita, M., et al., Dynamic mechanical properties of polypropylene composites filled with ultrafine particles. Journal of applied polymer science, 1984. 29(5): pp.1523-1530.

DOI: 10.1002/app.1984.070290506

Google Scholar

[38] Furuhashi, Y., Y. Kimura, and H. Yamane, Higher order structural analysis of stereocomplex‐type poly (lactic acid) melt‐spun fibers. Journal of Polymer Science Part B: Polymer Physics, 2007. 45(2): pp.218-228.

DOI: 10.1002/polb.21035

Google Scholar

[39] Tsuji, H., H. Takai, and S.K. Saha, Isothermal and non-isothermal crystallization behavior of poly (l-lactic acid): effects of stereocomplex as nucleating agent. Polymer, 2006. 47(11): pp.3826-3837.

DOI: 10.1016/j.polymer.2006.03.074

Google Scholar

[40] Mittal, V., et al., PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes. Colloid and Polymer Science, 2015. 293(2): pp.573-585.

DOI: 10.1007/s00396-014-3458-7

Google Scholar

[41] Martin, O. and L. Averous, Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001. 42(14): pp.6209-6219.

DOI: 10.1016/s0032-3861(01)00086-6

Google Scholar

[42] oseph, S. and S. Thomas, Modeling of tensile moduli in polystyrene/polybutadiene blends. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(8): pp.755-764.

DOI: 10.1002/polb.10139

Google Scholar

[43] Willemse, R., et al., Tensile moduli of co-continuous polymer blends. Polymer, 1999. 40(24): pp.6645-6650.

DOI: 10.1016/s0032-3861(98)00874-x

Google Scholar