[1]
Sue, H.-J., S. Wang, and J.-L. Jane, Morphology and mechanical behaviour of engineering soy plastics. Polymer, 1997. 38(20): pp.5035-5040.
DOI: 10.1016/s0032-3861(97)00048-7
Google Scholar
[2]
Vaidya, U.R. and M. Bhattacharya, Properties of blends of starch and synthetic polymers containing anhydride groups. Journal of applied polymer science, 1994. 52(5): pp.617-628.
DOI: 10.1002/app.1994.070520505
Google Scholar
[3]
Mohamed, A.A., et al., Thermal characteristics of polylactic acid/wheat gluten blends. Journal of food quality, 2006. 29(3): pp.266-281.
DOI: 10.1111/j.1745-4557.2006.00073.x
Google Scholar
[4]
Huneault, M.A. and H. Li, Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 2007. 48(1): pp.270-280.
DOI: 10.1016/j.polymer.2006.11.023
Google Scholar
[5]
Ku‐Marsilla, K. and C. Verbeek, Compatibilization of Protein Thermoplastics and Polybutylene Succinate Blends. Macromolecular Materials and Engineering, 2015. 300(2): pp.161-171.
DOI: 10.1002/mame.201400141
Google Scholar
[6]
Marsilla, K.K. and C. Verbeek, Modification of poly (lactic acid) using itaconic anhydride by reactive extrusion. European Polymer Journal, 2015. 67: pp.213-223.
DOI: 10.1016/j.eurpolymj.2015.03.054
Google Scholar
[7]
Gorrasi, G. and R. Pantani, Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polymer degradation and stability, 2013. 98(5): pp.1006-1014.
DOI: 10.1016/j.polymdegradstab.2013.02.005
Google Scholar
[8]
Auras, R., B. Harte, and S. Selke, An overview of polylactides as packaging materials. Macromolecular bioscience, 2004. 4(9): pp.835-864.
DOI: 10.1002/mabi.200400043
Google Scholar
[9]
Zhang, J., et al., Morphology and properties of soy protein and polylactide blends. Biomacromolecules, 2006. 7(5): pp.1551-1561.
Google Scholar
[10]
Wang, N., J. Yu, and X. Ma, Preparation and characterization of thermoplastic starch/PLA blends by one‐step reactive extrusion. Polymer International, 2007. 56(11): pp.1440-1447.
DOI: 10.1002/pi.2302
Google Scholar
[11]
Suyatma, N.E., et al., Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. Journal of Polymers and the Environment, 2004. 12(1): pp.1-6.
DOI: 10.1023/b:jooe.0000003121.12800.4e
Google Scholar
[12]
Verbeek, C.J.R., M.C. Lay, and A.W.K. Low, Methods of manufacturing plastic materials from decolorized blood protein. 2013, Google Patents.
Google Scholar
[13]
Low, A., Decoloured bloodmeal based bioplastic. 2012, University of Waikato.
Google Scholar
[14]
Hernandez‐Izquierdo, V. and J. Krochta, Thermoplastic processing of proteins for film formation-a review. Journal of food science, 2008. 73(2).
DOI: 10.1111/j.1750-3841.2007.00636.x
Google Scholar
[15]
Gennadios, A., Protein-based films and coatings. 2002: CRC Press.
Google Scholar
[16]
Zhang, J., P. Mungara, and J.-l. Jane, Mechanical and thermal properties of extruded soy protein sheets. Polymer, 2001. 42(6): pp.2569-2578.
DOI: 10.1016/s0032-3861(00)00624-8
Google Scholar
[17]
Pickering, K.L., et al., Plastics material. 2012, Google Patents.
Google Scholar
[18]
Verbeek, C.J.R., et al., Processability and mechanical properties of bioplastics produced from decoloured bloodmeal. Advances in Polymer Technology, (2017).
DOI: 10.1002/adv.21868
Google Scholar
[19]
Smith, M.J. and C.J. Verbeek, The relationship between morphology development and mechanical properties in thermoplastic protein blends. Advances in Polymer Technology, (2017).
DOI: 10.1002/adv.21847
Google Scholar
[20]
Marsilla, K. and C.J.R. Verbeek, Properties of Bloodmeal/Linear Low‐density Polyethylene Blends Compatibilized with Maleic Anhydride Grafted Polyethylene. Journal of Applied Polymer Science, 2013. 130(3): pp.1890-1897.
DOI: 10.1002/app.39323
Google Scholar
[21]
John, J. and M. Bhattacharya, Properties of reactively blended soy protein and modified polyesters. Polymer international, 1999. 48(11): pp.1165-1172.
DOI: 10.1002/(sici)1097-0126(199911)48:11<1165::aid-pi286>3.0.co;2-l
Google Scholar
[22]
Zhu, R., H. Liu, and J. Zhang, Compatibilizing effects of maleated poly (lactic acid)(PLA) on properties of PLA/Soy protein composites. Industrial & Engineering Chemistry Research, 2012. 51(22): pp.7786-7792.
DOI: 10.1021/ie300118x
Google Scholar
[23]
Zhong, Z. and X.S. Sun, Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer, 2001. 42(16): pp.6961-6969.
DOI: 10.1016/s0032-3861(01)00118-5
Google Scholar
[24]
Huang, J., et al., Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate. Journal of applied polymer science, 2004. 93(2): pp.624-629.
DOI: 10.1002/app.20478
Google Scholar
[25]
Walallavita, A., C.J. Verbeek, and M. Lay. Blending Novatein® thermoplastic protein with PLA for carbon dioxide assisted batch foaming. in AIP Conference Proceedings. 2016. AIP Publishing.
DOI: 10.1063/1.4942311
Google Scholar
[26]
Wang, C., C. Carriere, and J. Willett, Processing, mechanical properties, and fracture behavior of cereal protein/poly (hydroxyl ester ether) blends. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(19): pp.2324-2332.
DOI: 10.1002/polb.10250
Google Scholar
[27]
Sharabasht, M.M. and R.L. Guile, Copolymerization Parameters of Itaconic Anhydride in Free-Radical Polymerization. Journal of Macromolecular Science: Part A-Chemistry, 1976. 10(6): pp.1039-1054.
DOI: 10.1080/00222337608061235
Google Scholar
[28]
Okuda, T., et al., Renewable biobased polymeric materials: facile synthesis of itaconic anhydride-based copolymers with poly (L-lactic acid) grafts. Macromolecules, 2012. 45(10): pp.4166-4174.
DOI: 10.1021/ma300387j
Google Scholar
[29]
Fischer, L. and F. Peissker, A covalent two-step immobilization technique using itaconic anhydride. Applied microbiology and biotechnology, 1998. 49(2): pp.129-135.
DOI: 10.1007/s002530051148
Google Scholar
[30]
Low, A., C.J.R. Verbeek, and M.C. Lay, Treating Bloodmeal with Peracetic Acid to Produce a Bioplastic Feedstock. Macromolecular Materials and Engineering, 2014. 299(1): pp.75-84.
DOI: 10.1002/mame.201200447
Google Scholar
[31]
Hicks, T.M., et al., The role of peracetic acid in bloodmeal decoloring. Journal of the American Oil Chemists' Society, 2013. 90(10): pp.1577-1587.
DOI: 10.1007/s11746-013-2304-2
Google Scholar
[32]
Properties, A.S.D.o.M. Standard test method for tensile properties of plastics. 1996. American Society for Testing and Materials.
Google Scholar
[33]
ISO, E., 179-1 (2010).". Plastics. Determination of Charpy impact properties. Part. 1.
Google Scholar
[34]
Willemse, R., et al., Co-continuous morphologies in polymer blends: a new model. Polymer, 1998. 39(24): pp.5879-5887.
DOI: 10.1016/s0032-3861(97)10200-2
Google Scholar
[35]
Xie, H.-Q., J. Xu, and S. Zhou, Polymer blends with two kinds of elastomeric ionomers. Polymer, 1991. 32(1): pp.95-102.
DOI: 10.1016/0032-3861(91)90568-4
Google Scholar
[36]
Menczel, J.D. and R.B. Prime, Thermal analysis of polymers: fundamentals and applications. 2014: John Wiley & Sons.
Google Scholar
[37]
Sumita, M., et al., Dynamic mechanical properties of polypropylene composites filled with ultrafine particles. Journal of applied polymer science, 1984. 29(5): pp.1523-1530.
DOI: 10.1002/app.1984.070290506
Google Scholar
[38]
Furuhashi, Y., Y. Kimura, and H. Yamane, Higher order structural analysis of stereocomplex‐type poly (lactic acid) melt‐spun fibers. Journal of Polymer Science Part B: Polymer Physics, 2007. 45(2): pp.218-228.
DOI: 10.1002/polb.21035
Google Scholar
[39]
Tsuji, H., H. Takai, and S.K. Saha, Isothermal and non-isothermal crystallization behavior of poly (l-lactic acid): effects of stereocomplex as nucleating agent. Polymer, 2006. 47(11): pp.3826-3837.
DOI: 10.1016/j.polymer.2006.03.074
Google Scholar
[40]
Mittal, V., et al., PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes. Colloid and Polymer Science, 2015. 293(2): pp.573-585.
DOI: 10.1007/s00396-014-3458-7
Google Scholar
[41]
Martin, O. and L. Averous, Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001. 42(14): pp.6209-6219.
DOI: 10.1016/s0032-3861(01)00086-6
Google Scholar
[42]
oseph, S. and S. Thomas, Modeling of tensile moduli in polystyrene/polybutadiene blends. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(8): pp.755-764.
DOI: 10.1002/polb.10139
Google Scholar
[43]
Willemse, R., et al., Tensile moduli of co-continuous polymer blends. Polymer, 1999. 40(24): pp.6645-6650.
DOI: 10.1016/s0032-3861(98)00874-x
Google Scholar