Decoloured Novatein® and PLA Blends Compatibilized with Itaconic Anhydride

Abstract:

Article Preview

Poly (lactic acid) (PLA) was modified through free radical grafting of itaconic anhydride to create reactive side-chain groups. Modified PLA was blended with Decoloured Novatein® (DNTP), a thermoplastic protein material using reactive extrusion to produce a degradable material with improved properties compared to neat Decoloured Novatein®. Varying ratios of blends were prepared. Blending DNTP with PLA was found to increase tensile strength between 22% to 538% and modulus between 201 GPa to 3193 GPa, whereas the strain at break decreased between 80% to 94% depending on the blend ratio. The glass transition temperature of the blends which was measured as the tan δ peak, also revealed an increase when compared to neat DNTP. Scanning electron microscope revealed an enhanced interfacial adhesion between the two phases in the blends with PLA-g-IA suggesting a more homogenous microstructure. The results show the possibility and feasibility of blending DNTP with PLA for use in agricultural and packaging applications.

Info:

Periodical:

Edited by:

Leandro Bolzoni

Pages:

3-13

Citation:

S. C.P. Izuchukwu et al., "Decoloured Novatein® and PLA Blends Compatibilized with Itaconic Anhydride", Applied Mechanics and Materials, Vol. 884, pp. 3-13, 2018

Online since:

August 2018

Export:

Price:

$38.00

[1] Sue, H.-J., S. Wang, and J.-L. Jane, Morphology and mechanical behaviour of engineering soy plastics. Polymer, 1997. 38(20): pp.5035-5040.

DOI: https://doi.org/10.1016/s0032-3861(97)00048-7

[2] Vaidya, U.R. and M. Bhattacharya, Properties of blends of starch and synthetic polymers containing anhydride groups. Journal of applied polymer science, 1994. 52(5): pp.617-628.

DOI: https://doi.org/10.1002/app.1994.070520505

[3] Mohamed, A.A., et al., Thermal characteristics of polylactic acid/wheat gluten blends. Journal of food quality, 2006. 29(3): pp.266-281.

[4] Huneault, M.A. and H. Li, Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 2007. 48(1): pp.270-280.

DOI: https://doi.org/10.1016/j.polymer.2006.11.023

[5] Ku‐Marsilla, K. and C. Verbeek, Compatibilization of Protein Thermoplastics and Polybutylene Succinate Blends. Macromolecular Materials and Engineering, 2015. 300(2): pp.161-171.

DOI: https://doi.org/10.1002/mame.201400141

[6] Marsilla, K.K. and C. Verbeek, Modification of poly (lactic acid) using itaconic anhydride by reactive extrusion. European Polymer Journal, 2015. 67: pp.213-223.

DOI: https://doi.org/10.1016/j.eurpolymj.2015.03.054

[7] Gorrasi, G. and R. Pantani, Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polymer degradation and stability, 2013. 98(5): pp.1006-1014.

DOI: https://doi.org/10.1016/j.polymdegradstab.2013.02.005

[8] Auras, R., B. Harte, and S. Selke, An overview of polylactides as packaging materials. Macromolecular bioscience, 2004. 4(9): pp.835-864.

DOI: https://doi.org/10.1002/mabi.200400043

[9] Zhang, J., et al., Morphology and properties of soy protein and polylactide blends. Biomacromolecules, 2006. 7(5): pp.1551-1561.

[10] Wang, N., J. Yu, and X. Ma, Preparation and characterization of thermoplastic starch/PLA blends by one‐step reactive extrusion. Polymer International, 2007. 56(11): pp.1440-1447.

DOI: https://doi.org/10.1002/pi.2302

[11] Suyatma, N.E., et al., Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. Journal of Polymers and the Environment, 2004. 12(1): pp.1-6.

DOI: https://doi.org/10.1023/b:jooe.0000003121.12800.4e

[12] Verbeek, C.J.R., M.C. Lay, and A.W.K. Low, Methods of manufacturing plastic materials from decolorized blood protein. 2013, Google Patents.

[13] Low, A., Decoloured bloodmeal based bioplastic. 2012, University of Waikato.

[14] Hernandez‐Izquierdo, V. and J. Krochta, Thermoplastic processing of proteins for film formation-a review. Journal of food science, 2008. 73(2).

[15] Gennadios, A., Protein-based films and coatings. 2002: CRC Press.

[16] Zhang, J., P. Mungara, and J.-l. Jane, Mechanical and thermal properties of extruded soy protein sheets. Polymer, 2001. 42(6): pp.2569-2578.

DOI: https://doi.org/10.1016/s0032-3861(00)00624-8

[17] Pickering, K.L., et al., Plastics material. 2012, Google Patents.

[18] Verbeek, C.J.R., et al., Processability and mechanical properties of bioplastics produced from decoloured bloodmeal. Advances in Polymer Technology, (2017).

DOI: https://doi.org/10.1002/adv.21868

[19] Smith, M.J. and C.J. Verbeek, The relationship between morphology development and mechanical properties in thermoplastic protein blends. Advances in Polymer Technology, (2017).

[20] Marsilla, K. and C.J.R. Verbeek, Properties of Bloodmeal/Linear Low‐density Polyethylene Blends Compatibilized with Maleic Anhydride Grafted Polyethylene. Journal of Applied Polymer Science, 2013. 130(3): pp.1890-1897.

DOI: https://doi.org/10.1002/app.39323

[21] John, J. and M. Bhattacharya, Properties of reactively blended soy protein and modified polyesters. Polymer international, 1999. 48(11): pp.1165-1172.

DOI: https://doi.org/10.1002/(sici)1097-0126(199911)48:11<1165::aid-pi286>3.0.co;2-l

[22] Zhu, R., H. Liu, and J. Zhang, Compatibilizing effects of maleated poly (lactic acid)(PLA) on properties of PLA/Soy protein composites. Industrial & Engineering Chemistry Research, 2012. 51(22): pp.7786-7792.

DOI: https://doi.org/10.1021/ie300118x

[23] Zhong, Z. and X.S. Sun, Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer, 2001. 42(16): pp.6961-6969.

DOI: https://doi.org/10.1016/s0032-3861(01)00118-5

[24] Huang, J., et al., Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate. Journal of applied polymer science, 2004. 93(2): pp.624-629.

DOI: https://doi.org/10.1002/app.20478

[25] Walallavita, A., C.J. Verbeek, and M. Lay. Blending Novatein® thermoplastic protein with PLA for carbon dioxide assisted batch foaming. in AIP Conference Proceedings. 2016. AIP Publishing.

DOI: https://doi.org/10.1063/1.4942311

[26] Wang, C., C. Carriere, and J. Willett, Processing, mechanical properties, and fracture behavior of cereal protein/poly (hydroxyl ester ether) blends. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(19): pp.2324-2332.

DOI: https://doi.org/10.1002/polb.10250

[27] Sharabasht, M.M. and R.L. Guile, Copolymerization Parameters of Itaconic Anhydride in Free-Radical Polymerization. Journal of Macromolecular Science: Part A-Chemistry, 1976. 10(6): pp.1039-1054.

DOI: https://doi.org/10.1080/00222337608061235

[28] Okuda, T., et al., Renewable biobased polymeric materials: facile synthesis of itaconic anhydride-based copolymers with poly (L-lactic acid) grafts. Macromolecules, 2012. 45(10): pp.4166-4174.

DOI: https://doi.org/10.1021/ma300387j

[29] Fischer, L. and F. Peissker, A covalent two-step immobilization technique using itaconic anhydride. Applied microbiology and biotechnology, 1998. 49(2): pp.129-135.

DOI: https://doi.org/10.1007/s002530051148

[30] Low, A., C.J.R. Verbeek, and M.C. Lay, Treating Bloodmeal with Peracetic Acid to Produce a Bioplastic Feedstock. Macromolecular Materials and Engineering, 2014. 299(1): pp.75-84.

DOI: https://doi.org/10.1002/mame.201200447

[31] Hicks, T.M., et al., The role of peracetic acid in bloodmeal decoloring. Journal of the American Oil Chemists' Society, 2013. 90(10): pp.1577-1587.

DOI: https://doi.org/10.1007/s11746-013-2304-2

[32] Properties, A.S.D.o.M. Standard test method for tensile properties of plastics. 1996. American Society for Testing and Materials.

[33] ISO, E., 179-1 (2010).". Plastics. Determination of Charpy impact properties. Part. 1.

[34] Willemse, R., et al., Co-continuous morphologies in polymer blends: a new model. Polymer, 1998. 39(24): pp.5879-5887.

DOI: https://doi.org/10.1016/s0032-3861(97)10200-2

[35] Xie, H.-Q., J. Xu, and S. Zhou, Polymer blends with two kinds of elastomeric ionomers. Polymer, 1991. 32(1): pp.95-102.

DOI: https://doi.org/10.1016/0032-3861(91)90568-4

[36] Menczel, J.D. and R.B. Prime, Thermal analysis of polymers: fundamentals and applications. 2014: John Wiley & Sons.

[37] Sumita, M., et al., Dynamic mechanical properties of polypropylene composites filled with ultrafine particles. Journal of applied polymer science, 1984. 29(5): pp.1523-1530.

DOI: https://doi.org/10.1002/app.1984.070290506

[38] Furuhashi, Y., Y. Kimura, and H. Yamane, Higher order structural analysis of stereocomplex‐type poly (lactic acid) melt‐spun fibers. Journal of Polymer Science Part B: Polymer Physics, 2007. 45(2): pp.218-228.

DOI: https://doi.org/10.1002/polb.21035

[39] Tsuji, H., H. Takai, and S.K. Saha, Isothermal and non-isothermal crystallization behavior of poly (l-lactic acid): effects of stereocomplex as nucleating agent. Polymer, 2006. 47(11): pp.3826-3837.

DOI: https://doi.org/10.1016/j.polymer.2006.03.074

[40] Mittal, V., et al., PLA, TPS and PCL binary and ternary blends: structural characterization and time-dependent morphological changes. Colloid and Polymer Science, 2015. 293(2): pp.573-585.

DOI: https://doi.org/10.1007/s00396-014-3458-7

[41] Martin, O. and L. Averous, Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001. 42(14): pp.6209-6219.

DOI: https://doi.org/10.1016/s0032-3861(01)00086-6

[42] oseph, S. and S. Thomas, Modeling of tensile moduli in polystyrene/polybutadiene blends. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(8): pp.755-764.

DOI: https://doi.org/10.1002/polb.10139

[43] Willemse, R., et al., Tensile moduli of co-continuous polymer blends. Polymer, 1999. 40(24): pp.6645-6650.

DOI: https://doi.org/10.1016/s0032-3861(98)00874-x

Fetching data from Crossref.
This may take some time to load.