[1]
S. Nižetić, N. Djilali, A. Papadopoulos, J.J.P.C. Rodrigues, Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management, Journal of Cleaner Production. 231 (2019), 565-591.
DOI: 10.1016/j.jclepro.2019.04.397
Google Scholar
[2]
S. Liuzzi, C. Rubino, P. Stefanizzi, A. Petrella, A. Boghetich, C. Casavola, G. Pappalettera, Hygrothermal properties of clayey plasters with olive fibers, Constr. Build. Mater. 158 (2018), 24-32.
DOI: 10.1016/j.conbuildmat.2017.11.117
Google Scholar
[3]
L. Coppola, T. Bellezze, A. Belli, M. C. Bignozzi, F. Bolzoni, A. Brenna, M. Cabrini, S. Candamano, M. Cappai, D. Caputo, Binders alternative to Portland cement and waste management for sustainable construction-part 1, J. Appl. Biomater. Funct. Mater. 16 (2018), 186–202.
Google Scholar
[4]
L. Jing, K. Y. Christopher, Strength improvement of strain-hardening cementitious composites with ultrahigh-volume fly ash, J Mater Civ Eng. 29 (2017), 8.
DOI: 10.1061/(asce)mt.1943-5533.0001987
Google Scholar
[5]
R. Franz, F. Welle, Recycling of Post-Consumer Packaging Materials into New Food Packaging Applications—Critical Review of the European Approach and Future Perspectives, Sustainability. 14 (2022), 824.
DOI: 10.3390/su14020824
Google Scholar
[6]
C. Bulei, M. P. Todor, T. Heput, I. Kiss, Directions for material recovery of used tires and their use in the production of new products intended for the industry of civil construction and pavements, IOP Conference Series: Materials Science and Engineering. 294 (2018), 012064.
DOI: 10.1088/1757-899x/294/1/012064
Google Scholar
[7]
A. Luciano, L. Cutaia, P. Altamura, E. Penalvo, Critical issues hindering a widespread construction and demolition waste (CDW) recycling practice in EU countries and actions to undertake: The stakeholder's perspective, Sustainable Chemistry and Pharmacy, 29 (2022), 100745.
DOI: 10.1016/j.scp.2022.100745
Google Scholar
[8]
Plastics Europe. Plastics Europe—The Facts 2018; EPRO Report; Plastics Europe: Frankfurt, Germany. (2018).
Google Scholar
[9]
P. Bakshi, A. Pappu, M. K. Gupta, A review on calcium-rich industrial wastes: a sustainable source of raw materials in India for civil infrastructure—opportunities and challenges to bond circular economy, Journal of Material Cycles and Waste Management. 24 (2022), 49–62.
DOI: 10.1007/s10163-021-01295-4
Google Scholar
[10]
M. A. Rajaeifar, R. Abdi, M. Tabatabaei, Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view. Renew Sustain, Energy Rev. 74 (2017), 278–298.
DOI: 10.1016/j.rser.2017.02.032
Google Scholar
[11]
T. Maharana, Y. S. Negi, B. Mohanty, Review article: Recycling of polystyrene, Polym. Plast. Technol. Eng. 46 (2007), 729–736.
DOI: 10.1080/03602550701273963
Google Scholar
[12]
B. Herki, Combined e_ects of densified polystyrene and unprocessed fly ash on concrete engineering properties, Buildings. 7 (2017), 77.
DOI: 10.3390/buildings7030077
Google Scholar
[13]
R. M. Andrew, Global CO2 emissions from cement production, 1928–2017, Earth Syst. Sci. Dat. 10 (2018), 2213–2239.
DOI: 10.5194/essd-10-2213-2018
Google Scholar
[14]
M. A. Mollehuara, A. R. Cuadrado, V. L. Vidal, S. D. Camargo, Systematic review: Analysis of the use of D-limonene to Reduce the Environmental Impact of Discarded Expanded Polystyrene (EPS), OP Conf. Ser.: Earth Environ. Sci.. 1048 (2022), 012003.
DOI: 10.1088/1755-1315/1048/1/012003
Google Scholar
[15]
T. Ghoshal, P. R. Parmar, T. Bhuyan, D. Bandyopadhyay, Polystyrene Foams: Materials, Technology, and Applications, Polymeric Foams: Fundamentals and Types of Foams, 1 (2023), 121-141.
Google Scholar
[16]
J. Ankesh, S. Goyal, Properties of expanded polystyrene (EPS) and its environmental effects, Advances and Applications in Mathematical Sciences. 20 (2021), 2151-2162.
Google Scholar
[17]
L. Haibo, Experimental study on preparation of fly ash polystyrene new insulation building material, Chem. Eng. Trans 59 (2017), 295–300.
Google Scholar
[18]
R. Patiño-Herrera, R. Catarino-Centeno, G. González-Alatorre, A. G. Goicochea, E. Pérez, Enhancement of the hydrophobicity of recycled polystyrene films using a spin coating unit, J. Appl. Polym. Sci. 134 (2017), 45365.
DOI: 10.1002/app.45365
Google Scholar
[19]
H. Kim, S. Park, S. Lee, Acoustic performance of resilient materials using acrylic polymer emulsion resin, Materials. 9 (2016), 592.
DOI: 10.3390/ma9070592
Google Scholar
[20]
D. M. K. W. Dissanayake, C. Jayasinghe, M. T. R. Jayasinghe, A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels, Energy Build. 135 (2017), 85–94.
DOI: 10.1016/j.enbuild.2016.11.044
Google Scholar
[21]
B. A. Herki, J. M. Khatib, Valorisation of waste expanded polystyrene in concrete using a novel recycling technique, Eur. J. Environ. Civ. Eng. 21 (2017), 1384–1402.
DOI: 10.1080/19648189.2016.1170729
Google Scholar
[22]
D. S. Babu, K. G. Babu, W. E. Tiong-Huan, Efect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete, Cem. Concr. Compos. 28 (2006), 520–527.
DOI: 10.1016/j.cemconcomp.2006.02.018
Google Scholar
[23]
P. L. N. Fernando, M. T. R. Jayasinghe, C. Jayasinghe, Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels, Constr. Build. Mater. 139 (2017), 45–51.
DOI: 10.1016/j.conbuildmat.2017.02.027
Google Scholar
[24]
M. Najjar, K. Figueiredo, A. W.A. Hammad, A. Haddad, Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings. Applied Energy. 250 (2019), 1366-1382.
DOI: 10.1016/j.apenergy.2019.05.101
Google Scholar
[25]
P. Moran, J. O'Connell, J. Goggins, Sustainable energy efficiency retrofits as residenial buildings move towards nearly zero energy building (NZEB) standards, Energy and Buildings, 211 (2020), 109816.
DOI: 10.1016/j.enbuild.2020.109816
Google Scholar
[26]
W. A. Friess, K. Rakhshan, A review of passive envelope measures for improved building energy efficiency in the UAE, Renewable and Sustainable Energy Reviews. 72 (2017), 485-496.
DOI: 10.1016/j.rser.2017.01.026
Google Scholar
[27]
M. Qin, B. T. Chew, Y. H. Yau, Z. Yang, X. Han, L. Chang, Y. Liu, S. Pan, Characteristic analysis and improvement methods of the indoor thermal environment in post-disaster temporary residential buildings: A systematic review, Building and Environment. 235 (2023), 110198.
DOI: 10.1016/j.buildenv.2023.110198
Google Scholar
[28]
R. Ma, Z. Cao, T. Jiang, Y. Wang, S. Shi, W. Li, Y. Zhao, N. Zhong, D. Shi, X. Wu, Study of the Compressive Properties of Heavy Calcium Carbonate-Reinforced Epoxy Composite Spheres (HC-R-EMS) Composite Lightweight Concrete, Polymers. 15 (2023), 1278.
DOI: 10.3390/polym15051278
Google Scholar
[29]
P. F. B. Becker, C. Effting, A. Schackow, Lightweight thermal insulating coating mortars with aerogel, EPS, and vermiculite for energy conservation in buildings, Cement and Concrete Composites. 125 (2022), 104283.
DOI: 10.1016/j.cemconcomp.2021.104283
Google Scholar
[30]
T. Jiang, Y. Wang, S. Shi, N. Yuan, R. Ma, X. Wu, D. Shi, K. Sun, Y. Zhao, W. Li, J. Yu, Compressive behavior of lightweight concrete using aerogel-reinforced expanded polystyrene foams, Case Studies in Construction Materials. 17 (2022), e01557.
DOI: 10.1016/j.cscm.2022.e01557
Google Scholar
[31]
A. Kaya, F. Kar, Properties of concrete containing waste expanded polystyrene and natural resin, Construction and Building Materials. 105 (2016), 572-578.
DOI: 10.1016/j.conbuildmat.2015.12.177
Google Scholar
[32]
A. Ellouze, D. Jesson, R. B. Cheikh. The effect of thermal treatment on the properties of expanded polystyrene, Polymer, Engineering and Science. 60 (2020), 2710-2723.
DOI: 10.1002/pen.25502
Google Scholar
[33]
Brazilian Association of Technical Standards. concrete for structural purposes: NBR 8953. Rio de Janeiro. (2015).
Google Scholar
[34]
D. Barnat-Hunek, J. Góra, M. K. Widomski, Durability of Hydrophobic/Icephobic Coatings in Protection of Lightweight Concrete with Waste Aggregate, Materials. 14 (2021), 101.
DOI: 10.3390/ma14010101
Google Scholar
[35]
N. H. R. Sulong, S. A. S. Mustapa, M. K. A. Rashid, Application of expanded polystyrene (EPS) in buildings and constructions: A review, Applied Polymer. 20 (2019), 47529.
DOI: 10.1002/app.47529
Google Scholar
[36]
R. Wang, Z. Hu, Y. Li, K. Wang, H. Zhang, Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment, Construction and Building Materials. 321 (2022), 126371.
DOI: 10.1016/j.conbuildmat.2022.126371
Google Scholar
[37]
The International Council for Research and Innovation in Building and Construction CIB, United Nations Environment Programme International Environmental Technology Centre UNEP-IETC, Agenda 21 for Sustainable Construction in Developing countries South Africa. (2002).
Google Scholar
[38]
Brazilian Association of Technical Standards. Concrete — Molding and curing of specimens. ABNT NBR 5378. Rio de Janeiro. (2020).
Google Scholar
[39]
Brazilian Association of Technical Standards. Humid Chambers and Tanks for Curing Specimens: NBR 9479. Rio de Janeiro. (2006).
Google Scholar
[40]
Brazilian Association of Technical Standards. Concrete - Compression Testing of Cylindrical Specimens: Test Method: NBR 5739. Rio de Janeiro. (2018).
Google Scholar
[41]
Brazilian Association of Technical Standards. Concrete and Mortar: NBR 7222. Rio de Janeiro. (2006).
Google Scholar
[42]
Brazilian Association of Technical Standards. Soil-cement brick. Soil-cement brick-Requirements: NBR 8491. Rio de Janeiro. (2012).
Google Scholar