[1]
L.Yangyang and D. Zhang, Dynamic Analysis of an Axially Moving Underwater Pipe Conveying Pulsating Fluid, Frontiers in Marine Science, 9(982374), (2022).
DOI: 10.3389/fmars.2022.982374
Google Scholar
[2]
M. . Paidoussis, "Fluid-structure interactions: slender structures and axial flows," Acad. Press. Revis. Ed., 1, ( 2013).
Google Scholar
[3]
J. H. Mohmmed, M. A. Tawfik, and Q. A. Atiyab, The Combining Effect of Inclination Angle, Aspect Ratio and Thermal Loading on the Dynamic Response of Clamped-Clamped Pipe Conveying Fluid, Engineering and Technology Journal, 40(1), (2022), pp.40-48.
DOI: 10.30684/etj.v40i1.2159
Google Scholar
[4]
S. P. Pirogov, D. A. Cherentsov, A. Y. Chuba, and N. N. Ustinov, Simulation of Forced Oscillations of Pressure Monitoring Devices, International Journal of Engineering Trends and Technology, 70(2), (2022), pp.32-36, ISSN: 2231 – 5381 /.
DOI: 10.14445/22315381/ijett-v70i2p205
Google Scholar
[5]
L. Li, Y. Hu Critical flow velocity of fluid-conveying magneto-electro-elastic pipe resting on an elastic foundation, International Journal of Mechanical Sciences, 119, (2016), pp.273-282.
DOI: 10.1016/j.ijmecsci.2016.10.030
Google Scholar
[6]
Y. Ma, Y. You, K. Chen, and A. Feng, Analysis of vibration stability of fluid conveying pipe on the two-parameter foundation with elastic support boundary conditions, Journal of Ocean Engineering and Science, (2022) https://doi.org/10.1016/j.joes.2022.11.002 Available online 16 December (2022).
DOI: 10.1016/j.joes.2022.11.002
Google Scholar
[7]
O. Doaré. Dissipation Effect on Local and Global Stability of Fluid-Conveying Pipes. Journal of Sound and Vibration, Elsevier, 329 (1), (2010), pp.72-83. ff10.1016/j.jsv.2009.08.029ff. ffhal-00838862.
DOI: 10.1016/j.jsv.2009.08.029
Google Scholar
[8]
H. . Chellapilla and K.R. Simha, "Vibrations of Fluid-Conveying Pipes Resting on Two-Parameter Foundation," Open Acoust. J., 1, (2008), p.24–33.
DOI: 10.2174/1874837600801010024
Google Scholar
[9]
A. E. Abouelregal, H, Ahmad, S. K. Badr, B. Almutairi, and B. Almohsen, Viscoelastic Stressed Microbeam Analysis Based on Moore-Gibson-Thompson Heat Equation and Laser Excitation Resting on Winkler Foundation, Journal of Low Frequency Noise, Vibration and Active Control, 41(1), (2021), pp.118-139.
DOI: 10.1177/14613484211040318
Google Scholar
[10]
J. K. Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China. (1986).
Google Scholar
[11]
Q. Ni, Z. L. Zhang, and L. Wang, "Application of the differential transformation method to vibration analysis of pipes conveying fluid," Appl. Math. Comput., 217(16), (2011), p.7028–7038.
DOI: 10.1016/j.amc.2011.01.116
Google Scholar
[12]
K. A. Hafez, M. A. Abdelsalam, and A. N. Abdelhameed, "Dynamic on-bottom Stability Analysis of Subsea Pipelines Using Finite Element Method-Based General Offshore Analysis Software," Beni-Suef Univ J Basic Appl Sci , 11(36), (2022), doi.org/.
DOI: 10.1186/s43088-022-00219-x
Google Scholar
[13]
H. Yi-min, L. Yong-shou, L. Bao-hui, L. Yan-jiang, and Y. Zhu-feng, "Natural frequency analysis of fluid conveying pipeline with different boundary conditions," Nucl. Eng. Des., 240(3), (2010), p.461–467.
DOI: 10.1016/j.nucengdes.2009.11.038
Google Scholar
[14]
H. L. Dai, L. Wang, Q. Qian, and J. Gan, "Vibration analysis of three-dimensional pipes conveying fluid with consideration of steady combined force by transfer matrix method," Appl. Math. Comput., 219(5), (2012), p.2453–2464.
DOI: 10.1016/j.amc.2012.08.081
Google Scholar
[15]
J. Gu, C. An, M. Duan, C. Levi, and J. Su, "Integral transform solutions of dynamic response of a clamped-clamped pipe conveying fluid," Nucl. Eng. Des., 254, (2013), p.237–245.
DOI: 10.1016/j.nucengdes.2012.09.018
Google Scholar
[16]
M. Kheiri, M. P. Païdoussis, G. C. Del Pozo, and M. Amabili, "Dynamics of a pipe conveying fluid flexibly restrained at the ends," J. Fluids Struct., 49, (2014), p.360–385.
DOI: 10.1016/j.jfluidstructs.2013.11.023
Google Scholar
[17]
A. Arikoglu and I. Ozkol, "Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method," Compos. Struct., 92(12), (2010), p.3031–3039.
DOI: 10.1016/j.compstruct.2010.05.022
Google Scholar
[18]
Y. Yesilce, "Differential transform method for free vibration analysis of a moving beam," Struct. Eng. Mech.,35(5), (2010), p.645–658.
DOI: 10.12989/sem.2010.35.5.645
Google Scholar
[19]
Y. Yesilce, "Determination of natural frequencies and mode shapes of axially moving timoshenko beams with different boundary conditions using differential transform method," Adv. Vib. Eng., 12(1), (2013), p.89–108.
Google Scholar
[20]
R. Lal and N. Ahlawat, "Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method," Eur. J. Mech. A/Solids, 52, (2015), p.85–94.
DOI: 10.1016/j.euromechsol.2015.02.004
Google Scholar
[21]
B. Aydin, S. and Bozdogan, "Lateral stability analysis of multistoreybuildings using the differential transform method," Struct.Eng.Mech, 57(5), (2016), p.861–876.
DOI: 10.12989/sem.2016.57.5.861
Google Scholar
[22]
B. Bozyigit and Y. Yesilcea, "Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam," Struct. Eng. Mech., 58(5), (2016), p.847–868.
DOI: 10.12989/sem.2016.58.5.847
Google Scholar
[23]
C. B. Gan, S. Q. Guo, H. Lei, and S. X. Yang, "Random uncertainty modeling and vibration analysis of a straight pipe conveying fluid," Nonlinear Dyn., 77(3), (2014), p.503–519.
DOI: 10.1007/s11071-014-1313-5
Google Scholar
[24]
M. Li, X. Zhao, X. Li, X. P. Chang, and Y. H. Li, Stability Analysis of Oil-Conveying Pipes on Two-Parameter Foundations With Generalized Boundary Conditions by Means of Green's Function, Engineering Structures, 173, (2018), p.300–312.
DOI: 10.1016/j.engstruct.2018.07.001
Google Scholar
[25]
K. O. Orolu, T. A. Fashanu, and A. A. Oyediran, Stability of a Slightly Curved Viscoelastic Pipe Conveying Fluid, Journal of Engineering Research, 24{1), (2020), p.1–10.
Google Scholar
[26]
T. B. Benjamin, Dynamics of a system of articulated pipes conveying fluid: theory. (a). Proceedings of the Royal Society (London) A, 1307(261), (1961), pp.457-486.
DOI: 10.1098/rspa.1961.0090
Google Scholar
[27]
Z. Y. Liu, K. Zhou, L. Wanga, T. L. Jianga, and H. L. Daia, Dynamical Stability of Cantileveed Pipe Conveying Fluid in The Presence of Linear Dynamic Vibration Absorber, Journal of Computationa Applied Mechanics Vol. 50(1), (2019), pp.182-190, DOI: 0.22059/jcamech.2019.276606.365
Google Scholar