An Analytical Study of the Impact of an Inclined Magnetic Field on Couette Flow with Jeffrey Fluid under Local Thermal Non-Equilibrium (LTNE) and Viscous Dissipation

Article Preview

Abstract:

In this work, we examine the effects of viscous dissipation and local thermal non-equilibrium (LTNE) on Couette flow in a duct filled with a porous media under the influence of an angled magnetic field. The bottom plate of the duct is in motion and subjected to a constant heat flux, while the top plate remains stationary and adiabatic. The Jeffrey fluid flow model is consistent with the unidirectional flow in the porous zone. The studies provide more precise measurements of the effects of the Jeffrey parameter (λ), inclined angle (ϕ), Hartmann number (MW), thermal conductivity ratio (ν), Brinkman number (BrW), and Biot number (BiW) on improving heat transmission. The governing equations are solved analytically. The present investigation gives dimensionless temperatures for fluid-solid phases and fully developed Nusselt number (FDNN) profiles. Variation of Jeffrey parameter, inclined angle, Brinkman number, and Hartman number in the temperature field in both phases and FDNN. Furthermore, the temperature in the solid phase is higher than the temperature in the fluid phase for the Jeffrey parameter and Hartman number in the Couette flow, which supports LTNE validation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-170

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Vafai, C. L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, International Journal Heat Mass Transfer, 24(2) (1981) 195–2031.

DOI: 10.1016/0017-9310(81)90027-2

Google Scholar

[2] M. Quintard, S. Whitaker, One and two-equation models for transient diffusion processes in two-phase systems, Advanced Heat Transfer, 23 (1993) 369–465.

DOI: 10.1016/s0065-2717(08)70009-1

Google Scholar

[3] K. Vafai, M. Sozen, Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed, ASME Journal of Heat Transfer, 112(3) (1990) 690–699.

DOI: 10.1115/1.2910442

Google Scholar

[4] A. Amiri, K. Vafai, Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media, International Journal Heat Mass Transfer, 37(6) (1994) 939–954.

DOI: 10.1016/0017-9310(94)90219-4

Google Scholar

[5] D. A. Nield, A. Bejan, Convection in Porous Media, 4th ed., Springer, New York, 2013.

Google Scholar

[6] Y. Yi, X. Bai, F. Kuwahara and A. Nakayama, Analytical and numerical study on thermally developing forced convective flow in a channel filled with a highly porous medium under local thermal non-equilibrium, Transpose in Porous Media, 136 (2021) 541-567.

DOI: 10.1007/s11242-020-01524-8

Google Scholar

[7] L. Virto, M. Carbonell, R. Castilla and P. J. Gamez-Montero, Heating of saturated porous media in practice: several causes of local thermal non-equilibrium, International Journal Heat Mass Transfer, 52 (2009) 5412-5422.

DOI: 10.1016/j.ijheatmasstransfer.2009.07.003

Google Scholar

[8] M. Dehghan, M. S. Valipour, A. Keshmiri, S. Saedodin and N. Shokri, On the thermally developing forced convection through a porous material under the local thermal non-equilibrium condition: an analytical study, International Journal Heat Mass Transfer, 92 (2016) 815–823.

DOI: 10.1016/j.ijheatmasstransfer.2015.08.091

Google Scholar

[9] T. W. Ting, Y. M. Hung and N. Guo, Viscous dissipative forced convection in thermal non-equilibrium nanofluid-saturated porous media embedded in microchannels, International Communications in Heat and Mass Transfer, 57 (2014) 309-318.

DOI: 10.1016/j.icheatmasstransfer.2014.08.018

Google Scholar

[10] M. Torabi, K. Zhang, G. Yang, J. Wang and P. Wu, Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model, Energy, 82 (2015) 922-938.

DOI: 10.1016/j.energy.2015.01.102

Google Scholar

[11] B. Buonomo, O. Manca and G. Lauriat, Forced convection in porous microchannels with viscous dissipation in local thermal non-equilibrium conditions, International Communications in Heat and Mass Transfer, 76 (2016) 46-54.

DOI: 10.1016/j.icheatmasstransfer.2016.05.004

Google Scholar

[12] N. Gupta, D. Bhargavi, Numerical investigation of heat transfer in a developing thermal field in the porous-filled duct under local thermal nonequilibrium: constant wall heat flux, Special Topics and Reviews in Porous Media: An International Journal, 13(5) (2022) 49-81.

DOI: 10.1615/specialtopicsrevporousmedia.2022044357

Google Scholar

[13] T. Hayat, N. Ali, S. Asghar and A. M. Siddiqui, Exact peristaltic flow in tubes with an endoscope, Applied Mathematics and Computation, 182(1) (2006) 359–368.

DOI: 10.1016/j.amc.2006.02.052

Google Scholar

[14] N. Santhosh, G. Radhakrishnamacharya and A. J. Chamkha, Flow of a Jeffrey fluid through a porous medium in narrow tubes, Journal of Porous Media, 18(1) (2015) 71-78.

DOI: 10.1615/jpormedia.v18.i1.60

Google Scholar

[15] D. Bhargavi, J. S. K. Reddy, Analytical study of forced convection in a channel partially filled with porous material with the effect of magnetic field: constant wall heat flux, Special Topics and Reviews in Porous Media: An International Journal, 9(3) (2018) 201-216.

DOI: 10.1615/specialtopicsrevporousmedia.v9.i3.10

Google Scholar

[16] J. Reza, F. Mebarek-Oudina and O. D. Makinde, MHD slip flow of Cu-Kerosene nanofluid in a channel with stretching walls using 3-stage Lobatto IIIA formula, Defect and Diffusion Forum, 387 (2018) 51-62.

DOI: 10.4028/www.scientific.net/ddf.387.51

Google Scholar

[17] C. J. Etwire, I. Y. Seini, R. Musah and O. D. Makinde, On the flow of oil-based nanofluid on a stretching permeable surface with radiative heat transfer and dissipative energy, Defect and Diffusion Forum, 409 (2021) 1-16.

DOI: 10.4028/www.scientific.net/ddf.409.1

Google Scholar

[18] O. D. Makinde, V. Malapati and R. L. Monaledi, Unsteady MHD flow of radiating and rotating fluid with Hall current and thermal diffusion past a moving plate in a porous medium, Defect and Diffusion Forum 389 (2018) 71-85.

DOI: 10.4028/www.scientific.net/ddf.389.71

Google Scholar

[19] K. Vijaya, G. V. R. Reddy and O. D. Makinde, Soret effect on MHD Casson fluid flow past a moving vertical plate in the presence of radiation and chemical reaction, Diffusion Foundations, 26 (2020) 86-103.

DOI: 10.4028/www.scientific.net/df.26.86

Google Scholar

[20] F. Mebarek-Oudina, O. D. Makinde, Numerical simulation of oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect, Defect and Diffusion Forum, 387 (2018) 417-427.

DOI: 10.4028/www.scientific.net/ddf.387.417

Google Scholar

[21] T. Hayat, N. Ali, Peristaltic motion of a Jeffrey fluid under the effect of a magnetic field in a tube, Communications in Nonlinear Science and Numerical Simulation, 13(7) (2008) 1343-1352.

DOI: 10.1016/j.cnsns.2006.12.009

Google Scholar

[22] M. Kothandapani, S. Srinivas, Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel, International Journal of Non-Linear Mechanics, 43(9) (2008) 915-924.

DOI: 10.1016/j.ijnonlinmec.2008.06.009

Google Scholar

[23] N. Santhosh, G. Radhakrishnamacharya, Jeffrey fluid flow through porous medium in the presence of magnetic field in narrow tubes, International Journal of Engineering Mathematics, (2014).

DOI: 10.1155/2014/713831

Google Scholar

[24] N. S. Akbar, S. Nadeem C. Lee, Characteristics of Jeffrey fluid model for peristaltic flow of chyme in small intestine with magnetic field, Results in Physics, 3 (2013) 152-160.

DOI: 10.1016/j.rinp.2013.08.006

Google Scholar

[25] A. Nakayama, Non-Darcy Couette flow in a porous medium filled with an inelastic non-Newtonian fluid, Journal of Fluid Engineering, 114(4) (1992) 642-647.

DOI: 10.1115/1.2910080

Google Scholar

[26] A. V. Kuznetsov, Analytical Investigation of Couette Flow in a Composite Channel Partially Filled with a Porous Medium and Partially with a Clear Fluid, International Journal Heat Mass Transfer, 41(16) (1998) 2556–2560.

DOI: 10.1016/s0017-9310(97)00296-2

Google Scholar

[27] M. L. Kaurangini, B. K. Jha, Unsteady Generalized Couette Flow in Composite Microchannel. Applied Mathematics and Mechanics, 32(1) (2011) 23–32.

DOI: 10.1007/s10483-011-1390-6

Google Scholar

[28] B. K. Jha, J. O. Odengle, Unsteady Couette Flow in a Composite Channel Partially Filled with Porous Material: A Semi-Analytical Approach, Transpose in Porous Media, 107(1) (2015) 219–234.

DOI: 10.1007/s11242-014-0434-0

Google Scholar

[29] F. M. Baig, G. M. Chen and B. K. Lim, Thermal Viscous Dissipative Couette Flow in a Porous Medium Filled Microchannel, Proc of ASME 5th Int Conf Micro/Nanoscale Heat and Mass Transf Biopolis, Singapore 1–9 (2017).

DOI: 10.1115/mnhmt2016-6502

Google Scholar

[30] G. M. Chen, M. F. Baig and C. P. Tso, Local Thermal Nonequilibrium Viscous Dissipative Couette Flow in A Porous Medium, Special Topics and Reviews in Porous Media: An International Journal, 12(6) (2021) 31-41.

DOI: 10.1615/specialtopicsrevporousmedia.2021035101

Google Scholar

[31] P. Bitla, F. Y. Sitotaw, Effects of Slip and Inclined Magnetic Field on the Flow of Immiscible Fluids (Couple Stress Fluid and Jeffrey Fluid) in a Porous Channel, Journal of Applied Mathematics, (2022).

DOI: 10.1155/2022/2799773

Google Scholar

[32] D.A. Nield, A.V. Kuznetsov and M. Xiong, Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium, International Journal of Heat and Mass Transfer, 45(25) (2002) 4949-4955.

DOI: 10.1016/s0017-9310(02)00203-x

Google Scholar