[1]
K. Vafai, C. L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, International Journal Heat Mass Transfer, 24(2) (1981) 195–2031.
DOI: 10.1016/0017-9310(81)90027-2
Google Scholar
[2]
M. Quintard, S. Whitaker, One and two-equation models for transient diffusion processes in two-phase systems, Advanced Heat Transfer, 23 (1993) 369–465.
DOI: 10.1016/s0065-2717(08)70009-1
Google Scholar
[3]
K. Vafai, M. Sozen, Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed, ASME Journal of Heat Transfer, 112(3) (1990) 690–699.
DOI: 10.1115/1.2910442
Google Scholar
[4]
A. Amiri, K. Vafai, Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media, International Journal Heat Mass Transfer, 37(6) (1994) 939–954.
DOI: 10.1016/0017-9310(94)90219-4
Google Scholar
[5]
D. A. Nield, A. Bejan, Convection in Porous Media, 4th ed., Springer, New York, 2013.
Google Scholar
[6]
Y. Yi, X. Bai, F. Kuwahara and A. Nakayama, Analytical and numerical study on thermally developing forced convective flow in a channel filled with a highly porous medium under local thermal non-equilibrium, Transpose in Porous Media, 136 (2021) 541-567.
DOI: 10.1007/s11242-020-01524-8
Google Scholar
[7]
L. Virto, M. Carbonell, R. Castilla and P. J. Gamez-Montero, Heating of saturated porous media in practice: several causes of local thermal non-equilibrium, International Journal Heat Mass Transfer, 52 (2009) 5412-5422.
DOI: 10.1016/j.ijheatmasstransfer.2009.07.003
Google Scholar
[8]
M. Dehghan, M. S. Valipour, A. Keshmiri, S. Saedodin and N. Shokri, On the thermally developing forced convection through a porous material under the local thermal non-equilibrium condition: an analytical study, International Journal Heat Mass Transfer, 92 (2016) 815–823.
DOI: 10.1016/j.ijheatmasstransfer.2015.08.091
Google Scholar
[9]
T. W. Ting, Y. M. Hung and N. Guo, Viscous dissipative forced convection in thermal non-equilibrium nanofluid-saturated porous media embedded in microchannels, International Communications in Heat and Mass Transfer, 57 (2014) 309-318.
DOI: 10.1016/j.icheatmasstransfer.2014.08.018
Google Scholar
[10]
M. Torabi, K. Zhang, G. Yang, J. Wang and P. Wu, Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model, Energy, 82 (2015) 922-938.
DOI: 10.1016/j.energy.2015.01.102
Google Scholar
[11]
B. Buonomo, O. Manca and G. Lauriat, Forced convection in porous microchannels with viscous dissipation in local thermal non-equilibrium conditions, International Communications in Heat and Mass Transfer, 76 (2016) 46-54.
DOI: 10.1016/j.icheatmasstransfer.2016.05.004
Google Scholar
[12]
N. Gupta, D. Bhargavi, Numerical investigation of heat transfer in a developing thermal field in the porous-filled duct under local thermal nonequilibrium: constant wall heat flux, Special Topics and Reviews in Porous Media: An International Journal, 13(5) (2022) 49-81.
DOI: 10.1615/specialtopicsrevporousmedia.2022044357
Google Scholar
[13]
T. Hayat, N. Ali, S. Asghar and A. M. Siddiqui, Exact peristaltic flow in tubes with an endoscope, Applied Mathematics and Computation, 182(1) (2006) 359–368.
DOI: 10.1016/j.amc.2006.02.052
Google Scholar
[14]
N. Santhosh, G. Radhakrishnamacharya and A. J. Chamkha, Flow of a Jeffrey fluid through a porous medium in narrow tubes, Journal of Porous Media, 18(1) (2015) 71-78.
DOI: 10.1615/jpormedia.v18.i1.60
Google Scholar
[15]
D. Bhargavi, J. S. K. Reddy, Analytical study of forced convection in a channel partially filled with porous material with the effect of magnetic field: constant wall heat flux, Special Topics and Reviews in Porous Media: An International Journal, 9(3) (2018) 201-216.
DOI: 10.1615/specialtopicsrevporousmedia.v9.i3.10
Google Scholar
[16]
J. Reza, F. Mebarek-Oudina and O. D. Makinde, MHD slip flow of Cu-Kerosene nanofluid in a channel with stretching walls using 3-stage Lobatto IIIA formula, Defect and Diffusion Forum, 387 (2018) 51-62.
DOI: 10.4028/www.scientific.net/ddf.387.51
Google Scholar
[17]
C. J. Etwire, I. Y. Seini, R. Musah and O. D. Makinde, On the flow of oil-based nanofluid on a stretching permeable surface with radiative heat transfer and dissipative energy, Defect and Diffusion Forum, 409 (2021) 1-16.
DOI: 10.4028/www.scientific.net/ddf.409.1
Google Scholar
[18]
O. D. Makinde, V. Malapati and R. L. Monaledi, Unsteady MHD flow of radiating and rotating fluid with Hall current and thermal diffusion past a moving plate in a porous medium, Defect and Diffusion Forum 389 (2018) 71-85.
DOI: 10.4028/www.scientific.net/ddf.389.71
Google Scholar
[19]
K. Vijaya, G. V. R. Reddy and O. D. Makinde, Soret effect on MHD Casson fluid flow past a moving vertical plate in the presence of radiation and chemical reaction, Diffusion Foundations, 26 (2020) 86-103.
DOI: 10.4028/www.scientific.net/df.26.86
Google Scholar
[20]
F. Mebarek-Oudina, O. D. Makinde, Numerical simulation of oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect, Defect and Diffusion Forum, 387 (2018) 417-427.
DOI: 10.4028/www.scientific.net/ddf.387.417
Google Scholar
[21]
T. Hayat, N. Ali, Peristaltic motion of a Jeffrey fluid under the effect of a magnetic field in a tube, Communications in Nonlinear Science and Numerical Simulation, 13(7) (2008) 1343-1352.
DOI: 10.1016/j.cnsns.2006.12.009
Google Scholar
[22]
M. Kothandapani, S. Srinivas, Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel, International Journal of Non-Linear Mechanics, 43(9) (2008) 915-924.
DOI: 10.1016/j.ijnonlinmec.2008.06.009
Google Scholar
[23]
N. Santhosh, G. Radhakrishnamacharya, Jeffrey fluid flow through porous medium in the presence of magnetic field in narrow tubes, International Journal of Engineering Mathematics, (2014).
DOI: 10.1155/2014/713831
Google Scholar
[24]
N. S. Akbar, S. Nadeem C. Lee, Characteristics of Jeffrey fluid model for peristaltic flow of chyme in small intestine with magnetic field, Results in Physics, 3 (2013) 152-160.
DOI: 10.1016/j.rinp.2013.08.006
Google Scholar
[25]
A. Nakayama, Non-Darcy Couette flow in a porous medium filled with an inelastic non-Newtonian fluid, Journal of Fluid Engineering, 114(4) (1992) 642-647.
DOI: 10.1115/1.2910080
Google Scholar
[26]
A. V. Kuznetsov, Analytical Investigation of Couette Flow in a Composite Channel Partially Filled with a Porous Medium and Partially with a Clear Fluid, International Journal Heat Mass Transfer, 41(16) (1998) 2556–2560.
DOI: 10.1016/s0017-9310(97)00296-2
Google Scholar
[27]
M. L. Kaurangini, B. K. Jha, Unsteady Generalized Couette Flow in Composite Microchannel. Applied Mathematics and Mechanics, 32(1) (2011) 23–32.
DOI: 10.1007/s10483-011-1390-6
Google Scholar
[28]
B. K. Jha, J. O. Odengle, Unsteady Couette Flow in a Composite Channel Partially Filled with Porous Material: A Semi-Analytical Approach, Transpose in Porous Media, 107(1) (2015) 219–234.
DOI: 10.1007/s11242-014-0434-0
Google Scholar
[29]
F. M. Baig, G. M. Chen and B. K. Lim, Thermal Viscous Dissipative Couette Flow in a Porous Medium Filled Microchannel, Proc of ASME 5th Int Conf Micro/Nanoscale Heat and Mass Transf Biopolis, Singapore 1–9 (2017).
DOI: 10.1115/mnhmt2016-6502
Google Scholar
[30]
G. M. Chen, M. F. Baig and C. P. Tso, Local Thermal Nonequilibrium Viscous Dissipative Couette Flow in A Porous Medium, Special Topics and Reviews in Porous Media: An International Journal, 12(6) (2021) 31-41.
DOI: 10.1615/specialtopicsrevporousmedia.2021035101
Google Scholar
[31]
P. Bitla, F. Y. Sitotaw, Effects of Slip and Inclined Magnetic Field on the Flow of Immiscible Fluids (Couple Stress Fluid and Jeffrey Fluid) in a Porous Channel, Journal of Applied Mathematics, (2022).
DOI: 10.1155/2022/2799773
Google Scholar
[32]
D.A. Nield, A.V. Kuznetsov and M. Xiong, Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium, International Journal of Heat and Mass Transfer, 45(25) (2002) 4949-4955.
DOI: 10.1016/s0017-9310(02)00203-x
Google Scholar